77 research outputs found

    Pore-Facies as a tool for incorporation of small scale dynamic information in integrated reservoir studies

    Get PDF
    In this study, the quantification and incorporation of pore geometry, a qualitative parameter, and a source of dynamic information, will be demonstrated in the integrated reservoir studies. To quantify pore geometry, mercury injection capillary pressure (MICP) curves have been exploited. For each MICP curve, 20 parameters were derived and multi-resolution graph-based clustering was applied to classify the curves into nine representative distinct clusters. The number of clusters was determined based on petrography and cluster analysis. The quantified pore geometry in terms of discrete variable has been called pore-facies, and like electro-facies and litho-facies could be used in facies modelling and rock typing phases of an integrated study. The dependence of dynamic reservoir rock properties on pore geometry makes the pore-facies an interesting and powerful approach for incorporation of small-scale dynamic data into a reservoir model. A comparison among various facies definitions proved that neither litho-facies nor electro-facies is capable of characterizing dynamic rock properties, and the best results were achieved by the pore-facies method. Based on this study, it is recommended that for facies analysis in reservoir modelling, methods based on pore characteristics such as pore-facies, introduced in this paper, be used rather than traditional facies that rely on matrix properties. The next generation of the reservoir models which incorporate pore-facies-based rock types will provide a basis for more accurate static and dynamic models, a narrower range of uncertainty in the models, and a better prediction of reservoir performance

    An integrated approach to study the impact of fractures distribution on the Ilam-Sarvak carbonate reservoirs: a case study from the Strait of Hormuz, the Persian Gulf

    Get PDF
    Most of the Iranian hydrocarbon reservoirs in the Persian Gulf Basin and the Zagros Fold-Thrust Belt are composed of fractured carbonate rocks. In this regard, determining the spatial distribution of fractures has been a challenging issue. In this study, an integrated approach was applied for understanding the impact of fractures spatial distribution on the Ilam-Sarvak (Cenomanian to Santonian) carbonate reservoir rocks. For this purpose, seismic interpretation techniques along with geomechanical and geostatistical modeling were employed to characterize fractures at different scales. Initially, the relationship between fractures origin and the normal faults was investigated by conducting an in-situ stress analysis. Afterwards, the velocity deviation log (VDL) and fracture intensity log (FIL) were derived as fracture attributes from the interpretation of Formation Micro Imager (FMI) and conventional well logs. A 3D model of VDL and FIL was achieved by using a sequential Gaussian simulation (SGS) method. In order to achieve a more realistic and accurate model of the factures distribution, variations of the shear-wave velocity and geomechanical properties (Young's modulus and Poisson's ratio) were estimated by applying the advanced seismic interpretation techniques in the normal faults domain. The results show that the intensity of fractures increases once they are introduced to the normal faults, especially in the central part of the study area around well#2. Such a fractured zone is verified by fracture density log derived from FMI logs of the mentioned well. Obviously, there is a close-knit relationship between the fracture system and the normal faults. Eventually, secondary porosity caused by features was determined though identification of Hydraulic Flow Units (HFUs). Based on the porosity and permeability data, seven HFUs were determined for the Ilam-Sarvak reservoirs. The very high values of Log FZI indicate the possible presence of fractures. Overall, the fractures contributed to enhance the secondary porosity of the reservoir rocks though increasing matrix permeability. To sum up, the fractures system plays a critical role in controlling reservoir properties especially in the hanging-wall of normal faults where the majority of the macro and micro fractures are distributed

    Petrophysical data prediction from seismic attributes using committee fuzzy inference system

    Get PDF
    This study presents an intelligent model based on fuzzy systems for making aquantitative formulation between seismic attributes and petrophysical data. The proposed methodology comprises two major steps. Firstly, the petrophysical data, including water saturation (Sw) and porosity, are predicted from seismic attributes using various Fuzzy Inference Systems (FIS), including Sugeno (SFIS), Mamdani (MFIS) and Larsen (LFIS). Secondly, a Committee Fuzzy Inference System (CFIS) is constructed using a hybrid Genetic Algorithms-Pattern Search (GA-PS) technique. The inputs of the CFIS model are the output averages of theFIS petrophysical data. The methodology is illustrated using 3D seismic and petrophysical data of 11 wells of an Iranian offshore oil field in the Persian Gulf. The performance of the CFIS model is compared with a Probabilistic Neural Network (PNN). The results show that the CFIS method performed better than neural network, the best individual fuzzy model and a simple averaging method

    Increasing the number of embryos transferred from two to three, does not increase pregnancy rates in good prognosis patients

    Get PDF
    Background: To compare the pregnancy outcomes after two embryos versus three embryos transfers (ETs) in women undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles. Materials and Methods: This retrospective study was performed on three hundred eighty seven women with primary infertility and with at least one fresh embryo in good quality in order to transfer at each IVF/ICSI cycle, from September 2006 to June 2010. Patients were categorized into two groups according to the number of ET as follows: ET2 and ET3 groups, indicating two and three embryos were respectively transferred. Pregnancy outcomes were compared between ET2 and ET3 groups. Chi square and student t tests were used for data analysis. Results: Clinical pregnancy and live birth rates were similar between two groups. The rates of multiple pregnancies were 27 and 45.2 in ET2 and ET3 groups, respectively. The rate of multiple pregnancies in young women was significantly increased when triple instead of double embryos were transferred. Logistic regression analysis indicated two significant prognostic variables for live birth that included number and quality of transferred embryos; it means that the chance of live birth following ICSI treatment increased 3.2-fold when the embryo with top quality (grade A) was transferred, but the number of ET had an inverse relationship with live birth rate; it means that probability of live birth in women with transfer of two embryos was three times greater than those who had three ET. Conclusion: Due to the difficulty of implementation of the elective single-ET technique in some infertility centers in the world, we suggest transfer of double instead of triple embryos when at least one good quality embryo is available for transfer in women aged 39 years or younger. However, to reduce the rate of multiple pregnancies, it is recommended to consider the elective single ET strategy. � 2015, Royan Institute (ACECR). All rights reserved

    The miR-196a SNP Rs11614913 but not the miR-499 rs37464444 SNP is a risk factor for non-small cell lung cancer in an Iranian population

    Get PDF
    BACKGROUND: Globally, lung cancer represents a major cause of cancer-related deaths. The regulation of gene expression is modulated by small noncoding RNAs called miRNAs that can act as both tumor suppressors and oncogenes. The maturation, expression and binding to target mRNAs is affected by single nucleotide polymorphisms (SNPs) in miRNA genomic regions thereby contributing to cancer susceptibility. SNPs Rs11614913 in miR196a and Rs3746444 in miR-499 are implicated in the development of cancers such as non-small cell lung cancer (NSCLC) in non-Arabic subjects. MATERIALS AND METHODS: A small cohort of 204 participants including 104 lung cancer patients and 100 non-cancer controls subjects were enrolled into the study. The allele frequencies were determined by Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) and their correlation with lung cancer risk was determined. RESULTS: The miR-196a rs11614913 polymorphism increased the risk of NSCLC (CC vs. TT+TC: OR= 2.26, 95%CI= 1.28 - 3.98, P= 0.0046) in a dominant genetic model. No statistically significant association was found between the miR-499 rs37464444 polymorphism and NSCLC. CONCLUSION: The rs11614913 polymorphism in miR-196a, but not the miR-499 rs37464444 polymorphism, increased the risk of NSCLC. Further studies with larger sample sizes in correlation with functional outcomes at the cellular level should be undertaken

    Colchicine-induced autotetraploidy and altered plant cytogenetic and morpho-physiological traits in Catharanthus roseus (L.) G. Don

    Get PDF
    Artificially induced polyploidy is often used to alter plant growth patternand genetic makeup of certain plant species. This experiment was conducted to induce autotetraploidy in Catharanthus roseus (‘Alba’) which contains diploid chromosomes. Application of four levels (0, 100, 200 and 400 mg/l) of colchicine concentrations were utilized at the two true leaf stages of C. roseus. It has been observed that 200 mg/l colchicine treatment had the most striking effect on producing polyploid plants. This concentration was able to boost yield performance and survival of tetraploids to 35% and 79% respectively. Increasing of ploidy level was confirmed by flow cytometry and chromosome number. But, plant survival significantly decreased with increased of colchicine concentration. Chromosome number, length and diameter of stomata and chloroplast number in stomata of guard cells increased with increased ploidy level, whereas the numbers of stomata decreased from 390 to 177 mm2 intetraploid plants. The overall consequence of colchicines treatment appeared to be a beneficial approach. It elucidated that the chlorophyll content, diameter of the lateral branches, leaf length and width, petal length and width, duration length of flowering, durability of flowering, root diameter, fresh and dry weight of roots, seed length and seed diameter significantly increased in tetraploid as compared to diploid plants

    A preliminary study of NER and MMR pathways involved in chemotherapy response in bladder transitional cell carcinoma: Impact on progression-free survival

    Get PDF
    One of the main genotoxic drugs used in bladder cancer chemotherapy is cisplatin. While it is applied in most types of cancers, resistance to cisplatin is wildly common. In order to overcome drug resistance, it is necessary to determine a predictive marker. This study was conducted to provide basic data for selecting and designing a gene profile for further cohort and RCT studies in the future to improve response to treatment in bladder cancer. The expression levels of ERCC1, MLH1, MSH2, and CTR1 mRNA were determined in the tumor tissue using real-time q-PCR. Progression-free survival (PFS) was analyzed in term of the level of genes expression. The results revealed that the level of ERCC1 mRNA expression was higher in the recurrence (R) group compared to the no recurrence (NR) group. Moreover, the PFS time was increased in the patients with an ERCC1 expression level of below 1.57. The level of MLH1 and MSH2 mRNA expression was lower in the R group compared to the NR group; therefore, PFS time was increased in the patients with MLH1 and MSH2 gene expression levels above the cutoff point. While the level of CTR1 mRNA expression was higher in the R group versus the NR group, the PFS time was longer in the patients with CTR1 expression levels of below 1.265 compared to the patients with high levels of CTR1 expression. It can be concluded that the level of ERCC1, MLH1, MSH2, and CTR1 mRNA expression may be associated with PFS time as possible therapeutic targets for decreasing cisplatin resistance. © 2020, Iranian Journal of Pharmaceutical Research. All rights reserved

    Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To functionally characterize pro-inflammatory and vasoconstrictive properties of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage (SAH) in vivo and in vitro.</p> <p>Methods</p> <p>The cerebrospinal fluid (CSF) of 10 patients suffering from SAH was applied to the transparent skinfold chamber model in male NMRI mice which allows for in vivo analysis of the microcirculatory response to a superfusat. Microvascular diameter changes were quantified and the numbers of rolling and sticking leukocytes were documented using intravital multifluorescence imaging techniques. Furthermore, the pro-inflammatory properties of CSF were assessed in vitro using a monocyte transendothelial migration assay.</p> <p>Results</p> <p>CSF superfusion started to induce significant vasoconstriction on days 4 and 6 after SAH. In parallel, CSF superfusion induced a microvascular leukocyte recruitment, with a significant number of leukocytes rolling (day 6) and sticking (days 2-4) to the endothelium. CSF of patients presenting with cerebral edema induced breakdown of blood vessel integrity in our assay as evidenced by fluorescent marker extravasation. In accordance with leukocyte activation in vivo, significantly higher in vitro monocyte migration rates were found after SAH.</p> <p>Conclusion</p> <p>We functionally characterized inflammatory and vasoactive properties of patients' CSF after SAH in vivo and in vitro. This pro-inflammatory milieu in the subarachnoid space might play a pivotal role in the pathophysiology of early and delayed brain injury as well as vasospasm development following SAH.</p

    Translational Stroke Research Using a Rabbit Embolic Stroke Model: A Correlative Analysis Hypothesis for Novel Therapy Development

    Get PDF
    Alteplase (tissue plasminogen activator, tPA) is currently the only FDA-approved treatment that can be given to acute ischemic stroke (AIS) patients if patients present within 3 h of an ischemic stroke. After 14 years of alteplase clinical research, evidence now suggests that the therapeutic treatment window can be expanded 4.5 h, but this is not formally approved by the FDA. Even though there remains a significant risk of intracerebral hemorrhage associated with alteplase administration, there is an increased chance of favorable outcome with tPA treatment. Over the last 30 years, the use of preclinical models has assisted with the search for new effective treatments for stroke, but there has been difficulty with the translation of efficacy from animals to humans. Current research focuses on the development of new and potentially useful thrombolytics, neuroprotective agents, and devices which are also being tested for efficacy in preclinical and clinical trials. One model in particular, the rabbit small clot embolic stroke model (RSCEM) which was developed to test tPA for efficacy, remains the only preclinical model used to gain FDA approval of a therapeutic for stroke. Correlative analyses from existing preclinical translational studies and clinical trials indicate that there is a therapeutic window ratio (ARR) of 2.43-3 between the RSCEM and AIS patients. In conclusion, the RSCEM can be used as an effective translational tool to gauge the clinical potential of new treatments

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
    corecore