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Abstract

This study presents an intelligent model baseduanyf systems for making a
guantitative formulation between seismic attribiaed petrophysical data. The
proposed methodology comprises two major stepstl¥ithe petrophysical data,
including water saturatiorg() and porosity, are predicted from seismic atteisut
using various Fuzzy Inference Systems (FIS), inagi&Gugeno (SFIS), Mamdani
(MFIS) and Larsen (LFIS). Secondly, a Committeezyunference System (CFIS) is
constructed using a hybrid Genetic Algorithms-Rattearch (GA-PS) technique.
The inputs of the CFIS model are the output aveyafi¢he FIS petrophysical data.
The methodology is illustrated using 3D seismic pattophysical data of 11 wells of
an Iranian offshore oil field in the Persian Gilhe performance of the CFIS model
is compared with a Probabilistic Neural Network (NThe results show that the
CFIS method performed better than neural netwbik pest individual fuzzy model

and a simple averaging method.
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Introduction

The last decade has witnessed significant advandbls study and
application of expert systems in the petroleum gtidu The establishment of the
existence of an intelligent formulation, betweeio vets of data (inputs/outputs), has
been the main topic of such studies. One such topigreat interest, was to
characterize how 3D seismic data can be relatéthtdogy, rock types, fluid content,
porosity, shear wave velocity and other reservapprties. Petrophysical parameters,
such as water saturation and porosity, are verpitapt data for hydrocarbon
reservoir characterization. Hitherto, several regears have worked on predicting
them from seismic data using statistical methodksiatelligent systems (Nikravesh et
al., 1998; Balch et al., 1999; Trappe and HellmR®)O; Nikravesh et al., 2001,
Nikravesh and Aminzadeh, 2001; Wong and Nikrav8B;; Meldahl et al., 2001;
Russell et al., 2002; Russell et al., 2003; Nikstwvand Hassibi, 2003; Aristimufio
and Aldana, 2006; Chopra and Marfurt, 2006; Souimta and Stewart, 2006).
Generally, geological, petrophysical and seismia @ae not clear-cut and, inherently,
are associated with uncertainties. Fuzzy expetesyshave become one of the
modern and robust techniques for the analysis o$gjences data (Rezaee et al.,
2007; Kadkhodaie et al., 2006). They are able togeize patterns, based on the
fuzzy classification of data into natural group$ieh are termed as clusters. For each
cluster, a membership function is fitted which $2d in the process of formulating
input to output data through fuzzy rules.
A Committee Fuzzy Inference system (CFIS), whicimisoduced in this study, has a
parallel structure that produces a final resultbmbining the output of individual
fuzzy models, using a hybrid, genetic algorithmtgrat search technique. Experts of
CFIS model are the result of Sugeno, Mamdani, lrees®l simple averaging method.
Each of the experts has a weight factor in the tcocison of the CFIS that is derived
by GA-PS. The CFIS was successfully applied taGhar reservoir of the Iranian

offshore oilfield, Persian Gulf.

1. Methodology
1.1. Fuzzy inference system
A Fuzzy Inference System (FIS) is a process of tdatmg, from a set of input data

to a set of output data, using fuzzy sets theanyzi sets theory was first introduced



by Zadeh (1965). In fuzzy sets theory, each elemmayt belong to a set to a degree
(1) which can take values ranging from O to 1 (parhambership). Each fuzzy set is
represented by a membership function (MF). MFéseveral types such as
Gaussian, triangular, trapezoidal, sigmoid, S-shaghape, etc. There are three main
parts in a FIS. These are a) Fuzzifier, b) InfeeeBngine (fuzzy rule base) and c)
Defuzzifier (see figure 1). In the Fuzzifier, eanfsp (non-fuzzy) value passes
through a membership function and takes a valugdsat O and 1. The Inference
Engine is the main part of the system that consisssfuzzy rule base (RB). The
fuzzy rule base may consist of multiple inputs emdtiple outputs (MIMO) which, in
turn, can be broken down further into a set of hises with multiple inputs and
single output (MISO) (Lee, 2004).

RBz{iéllRiMlMO} :{k@lé [(A XA\ xB)) - Cik]}

:{é[(A X\ xB) - Cl],é[(A xA\ xB) - C,],K ,é[(A x\ xB)) - C1}
={RB"wiso, RB’miso,A ,RB"'miso} Eq. (1)

In cases where thantecedentsf fuzzy rules include multiple parts, then fuzzy
operators are used to connect them. The most confumay operators arenin (C);
max([)); product(s) andnot (-). Theconsequentf a fuzzy rule assigns an entire
fuzzy set to the output. This fuzzy set is représgiby a membership function that is
chosen to indicate the qualities of the consequktite antecedent is only partially
true, then the output fuzzy set is truncated agéngrtb a process which is termed
implication Since decisions are based on the testing of #hleorules in an FIS, the
rules must be combined in some manner in orderaicera decisionAggregationis
the process by which the fuzzy sets, which reptabsenoutputs of each rule, are
combined into a single fuzzy set. The input ofalggregation process is the list of
truncated output functions returned by the implaraprocess for each rule.
Defuzzification is the process of transforming #uygregation result intoaisp

output. There are various defuzzification methotigctvinclude: centroid; bisector;
large of maximum (LOM); small of maximum (SOM) amgtan of maximum (MOM).
Mamdani method: The most important differences among fuzzy infeeesygstems
are the types of the output membership functiomisthe implication methods. In
MFIS the output membership functions are fuzzy.s&fter the aggregation process,
there is a fuzzy set for each output variable tiestds defuzzification. This method



uses thanin operation [[J) as a fuzzy implication (Mamdani and Assilian, 397
Mamdani, 1976 & 1977).

Let’'s suppose a rule base is given in the followomn:
Ri:ifxisAandyisBthenzis ¢ i=1,2,...,n

then, R= (Ai L B) - Ciis defined by tlg = Ha andE,,chi)(x, Y, 2)

The input datx = Xo, y = Yo pass through the rule, above, to produce the dagdut,
as below (Lee, 2004):

( ,uci’(z) = [IUA (Xo) O IUBi (yo)] - ,uq (Z)
e (2)=a, Cuc (2)
He (2) = e, (2) Ute, (2) =[a, U, (2] Dla, Ui, (2)]

\Hc (2 = i@l[ai D'Uci (2)] = i@l'uq (2.C"= élci’ Ea. (2)

A graphical illustration of MFIS is shown in figuga.
Larsen method: This method uses th@oductoperator for the fuzzy implication. As
with the Mamdani method output, MFs are fuzzy gedssen, 1980). For a rule base
in following form
Ri:ifxisAandyisBthenzis¢ i=1,2,...,n
then R =(A OB) — C, is defined bifg = M og .c)(X ¥, 2)
The input datx = Xo, y = Yo produce the final output, as below (Lee, 2004):
He () =[pn (%) T g (Yo)] = M, (2) =[n (%) T tg (Yo)]- He, (2)
=a, - pi (2) wherea, = 11, (%) 0 (Yo)

He(2) = E'l[ai U (2] = El/uc; (2),C'= ElCi, Eq. (3)

A graphical illustration of LFIS is shown in figuib.

Sugeno method: Sugeno fuzzy inference system is similar to the Mann method in
many aspects. In the first two parts of the fuzdgrence process, fuzzifying the
inputs and applying the fuzzy operator, are exdabiysame. Moreover, all the
lemmas expressed for Mamdani fuzzy inference systenthe same for SFIS. The
main difference between them is that output menhigefsinctions are either linear or
constant in Sugeno method (Sugeno, 1985).

A typical rule in a Sugeno fuzzy model has the form

If Input 1 =% and Input 2 =y, then z = px+ qyo + r



For a zero-order Sugeno model, the output levaeldsnstant= q = 0). The output

level, z of each rule, is weighted by the firing strengtfof the rule. The final output

of the system is the weighted average of all rulgpuots, computed as follows:

Final output= ) a,z/ ) a,
PILILEDY Eq. (4

A graphical illustration of SFIS is shown in figuze.

1.2. Committee fuzzy inference system

The proposed methodology, CFIS, consists of twamnmsteps. At the first stage,
petrophysical data are predicted from seismic dsitag SFIS, MFIS and LFIS
models. Then a CFIS is constructed using a GA-Blshique. A schematic diagram
of the CFIS, designed in this study, is shown guife 3. The inputs of CMIS are the
outputs and average of the previously mentionedyfazodels. In this approach, each
of the individual fuzzy inference systems has agivecoefficient, in constructing
CFIS, showing its contribution in the overall pretdbn of the output data. A GA-PS
technique can extract the appropriate weightsthiementioned models, using an
integration of genetic algorithm and pattern seaechniques. Genetic algorithms
were first introduced by Holland (1975). Potensialutions are calledhromosomes
and are represented by binary strings, or floghimigt numbers. A set of
chromosomes is calledp@pulation,and a problem to be solved is represented by a
fitness functionlt is a method for moving from one populationcafomosomes to a
new population by using a kind of natural selecpoocess together with the
genetics—inspired operatorsabssovermutation andinversion The selection
operator chooses those chromosomes in the populhiad will be allowed to
reproduce, and on average the fitter chromosoneeipe more offspring than the
less fit onesCrossoverexchanges subparts of two chromosomagationrandomly
changes the allele values of some locations iclihemosome; anshversionreverses
the order of a contiguous section of the chromosdmss rearranging the order in
which genes are arrayed (Mitchell, 1999). In thiéegwa search technique, the
algorithm searches a set of points, calledesh around the current point (the point
computed at the previous step of the algorithmg iitesh is formed by adding the
current point to a scalar multiple of a set of eestcalled gattern If the pattern

search algorithm finds a point in the mesh thatrowps the objective function at the



current point, the new point becomes the curremitgd the next step of the
algorithm (Matlab user’s guide, 2007).

In this study, the fitness function for minimizatiby GA-PS was selected as mean
squared error (MSE) in predicting petrophysicabdaing mentioned methods. The

equation for predicting final output is expressesdalow:
Output= ﬁl'OUtpUTSFIS-FﬁZ'OUtpUTMFIS+ﬁ3'OUtpuﬁ_FIS+IB4'OUtpUtAverage Eq. (5)
where S8, , ., B, and 5, are the weight coefficients corresponding to thipots of

Sugeno, Mamdani, Larsen and simple averaging method

The methodology, described in this study, reaps#mefit of all individual methods,
and provides more accurate results. It is cledrrttemmy components of the method,

described in this study, are based on the resuitither researcher’s works (such as
Nikravesh et al., 1998; Mohaghegh et al., 1999; dyptegh, 2000; Hampson et al.,

2001; Saggaf and Nebrija, 2003; Russell, 2003 &26@amali and Mirshady, 2004;

Lim, 2005; Chen and Lin, 2006). Overall, it prowsden optimal model for predicting

well data from seismic attributes.

2. Application to the Iranian Offshore Qilfield

The present study focuses on application of thegsed methodology of CFIS on an
Iranian offshore oilfield. For this purpose, intexfed 3D seismic data and
petrophysical data from 11 wells (figure 4) of gtady field were used. Seismic data
were acquired in 2002 and cover a total area ofceqipately 242 krfi Ghar
Sandstone is the main reservoir unit over the studg. Seismic data quality is
generally good over the entire time range with laseace of strong multiple
interference. The seismic data is close to zergg@hathe Ghar level. A 3D crossline
showing general quality of seismic data acrossthay field is shown in figure 5. All
of the petrophysical data were reviewed and quabtytrolled. Sonic and density logs

were available for all wells.

3.1 Correlation of well logsto seismic data

At the first stage of study, well log data wereretated to seismic data. Synthetic
seismograms were generated for each of the 11:wl|sA5, A9, A10, All,

All 7H, A11 12H, A12 7H, A14 5H and A18 2H. Theusta velocities from the

sonic logs were multiplied by the bulk density \edudrom density logs to compute



acoustic impedance logs. This impedance was cad/éstreflectivity, which was
then converted from depth to time using a suitéibie-depth relationship. Finally,
the reflectivity in time was convolved with an appriate wavelet to produce a
synthetic seismogram. Depth-to-time conversiorhefwell logs was accomplished
by applying checkshot data supplied for wells Ah@ A12. It was necessary to
create synthetics and extract the wavelets itesitifor the placement of the log data
in time. This depth-to-time process allowed foloaparison of the well logs, and
their associated tops, with the seismic data i tiRorizon interpretations and
geologic well tops were used as an aid in detengiaitime-depth relationship for
deviated wells. A sample of a well-to-seismic &ewell A9, is shown in figure 6
where the correlation between synthetic seismodlbdne) and composite trace (red ),
at the well location, is 0.70.

3.2 Selection of optimal seismic attributes

Generally, the purpose of applying several staastand intelligent models is to find
linear and non-linear relationships and structbedsveen input and output data. For
this purpose, there should be a logical relatignbleitween input and target parameter.
In this section of the research investigations spdaf relationships between input data
(seismic attributes) and output data (petrophygeaameters) were investigated
through the application of multi-regression anasyge multi-regression analysis is a
simple and practical method to find the strongestiis for predicting a target
parameter. Accordingly, multi-attributes to be usedonstruction of fuzzy models
were chosen based on the trend obtained from i@greanalyses. The results of
multi-regression analyses, for predicting wateusston and porosity, are shown in
Table 1a, and 1b. According to Table 1, adding nattrgbutes will improve the
prediction. This does not always mean that the cddkeibutes are predicting the true
signal in the target log. The validation error t@nconsidered as a criterion for
determining when to stop adding attributes to tipait set (Russell, 2004). According
to Table 1a, the first four attributes of time, mge frequency, filter 15/20-25/30 and
dominant frequency, could be considered as thenapinputs for predicting water
saturation. The relationships between the inpnsiei attributes an8, are shown in
the crossplots of figure 7. Normally, in a hydrdmam bearing interval, oil saturation
decreases toward oil-water contact. Therefore, v&atieiration increases as time

(depth) increases across the hydrocarbon beariexryal. Average frequency is a



signature of the events and effects of the abnoatt@huation due to the presence of
the hydrocarbons (Taner et al., 1994). Filter X523/30 is a trapezoidal frequency
filter and acts as dominant frequency. As withdkierage frequency, dominant
frequency can indicate abnormal frequency atteanatnd, thereby, indicate the
presence of hydrocarbon bearing zones.

Performing a similar process, for predicting paiygsseven predictors have been
proposed. These includ@version resultintegrate Quadrature tracecosine
instantaneous phasmtegrated absolute amplitudamplitude envelopandfilter
15/20-25/3(Q(Table 1b). This method, proposed by Russell (2084 fficient in
determining optimal inputs for construction of fyanodels. The relationships
between the input seismic attributes and porosayshown in the crossplots of figure
8. The physical relationships between seismichaiteis and porosity are as follows:
Acoustic impedance is a product of sonic velocitg aulk density. There is an
inverse relationship between velocity and bulk dgnéccordingly, porosity is an
inverse function of acoustic impedant#egrateis the sum of the amplitudes within
a window interval (Chen and Sidney, 1997). It isradicator of an amplitude
anomaly due to changes in lithology and poro$iyadrature tracas calculated

from a complex seismic trace analysis. It is atyumlphase-delay feature and is
useful in identifying vertical variation @fistantaneous phas¥®ertical variations of
instantaneous phagselate to variations in porosity and lithology.

Cosine instantaneous phaisean attribute derived from instantaneous ph@see its
fixed bounds (-1 to +1) are easier to understariee(Gnd Sidney, 1997), it can better
identify variations in porosity and lithologintegrated absolute amplitude sum of

all the trace amplitudes within the window intervas with the integrate attribute, it
can indicate amplitude anomalies as a resultlodliitgy and porosity variations. The
amplitude envelopes an indicator of the major lithology changes afhdas and
liquid-accumulations (Taner et al, 1994). Accordinglgah indicate porosity
changes within a hydrocarbon bearing interval. Bsuksed for the water saturation,
filter 15//20-25/30is a trapezoidal frequency filter and can indigadeosity changes

due to amplitude variations.

3.3 Fuzzy clustering
Clusteringof numerical data forms the basis of many fuzzygetiog and pattern

classification algorithms. The purpose of clustgiigto find natural groupings of



data, within a large dataset, thus revealing pattdrat can provide a concise
representation of the data behavior (Dubois el@by).Fuzzy c-meanand
subtractive clusteringre two powerful fuzzy clustering techniques whechild be
used for the construction of a fuzzy rule base.

Subtractive clusterings an effective approach to estimate the numbéuzdy
clusters and cluster centers in a Sugeno fuzzyaente system (Jarrah and Halawani,
2001). In subtractive clustering, each data pa@moinsidered as a potential cluster
center. Using this method, the number of effecguid points to be evaluated is
simply equal to the number of data points, indepahdf the dimension of the
problem (Chiu, 1994 & 1995). In subtractive clustgr the radius of neighborhood
(cluster radius) plays an important role in condian of fuzzy inference system. It
can take values between the range of [0, 1]. Spagifa smaller cluster radius will
usually yield more and smaller clusters in the dedaulting in more rules). A large
cluster radius yields a few large clusters in tamdChiu, 1994).

In the present study, the dataset is a matrix tvbphysical data and corresponding
seismic attributes (328 samples of Ghar reservomfll wells). The dataset was
divided into 252 model samples and 76 testing sasjal evaluate the the reliability
of this new method. The optimum number of clustegis extracted, by specifying a
set of values between 0 and 1 for clustering radind measuring the performance of
the model for test data at each stage. The rasoNted that, by performing
subtractive clustering on the water saturation g matrix of input seismic
attributes and water saturation), this processigeavthe lowest error
(MSEsks=0.0136) in the case specifying 0.15 for clusteredjus, resulting in 43
clusters. For porosity, by specifying 0.4 for cargtg radius, generated the lowest
mean squared error (Mgks=0.0035), resulting in 50 clusters.

Fuzzy c-mean@CM) is another fuzzy clustering technique ttoahfs the basis of
Mamdani and Larsen fuzzy inference systems. Tlisnigue was originally
introduced by Jim Bezdek in 1981. It provides ahlmdtof grouping data points that
populate some multidimensional space into a smecifmber of different clusters.
TheFuzzy c-meanselustering starts with an initial guess for thestér centers, which
are intended to mark the mean location of eachealu$he initial guess for these
cluster centers is most likely incorrect. AdditiblmaFCM assigns every data point a
membership grade for each cluster. By iterativgglating the cluster centers and the

membership grades for each data point, FCM itezBtinoves the cluster centers to



the right location within a dataset. This iteratisibased on minimizing an objective
function that represents the distance from anyrgoega point to a cluster center
weighted by that data point’'s membership grade.H®® output is a list of cluster
centers, and several membership grades, for edalpdmt (Matlab user’s guide,
2007).

As mentioned in MFIS and LFIS, fuzzy rules are asted through FCM. So the
model matrices of water saturation and porosityewsrssed through FCM algorithm
and cluster centers were calculated. In FCM allgorjtthe number of clusters is
defined by the user. However, an important questiohow many clusters are
needed? To answer this question, the same methatidosing the optimum cluster
radius, in subtractive clustering, is applied. Tisaby specifying a number of clusters,
from 1 to the number of the model data points @sirifor cycle”), and measuring
the performance of the model for test data at stape, the optimum number of
clusters was calculated. Results showed that tierwaturation model performs
better when the number of clusters is 31 (MS&0.0161, MSErs=0.0169),
whereas the porosity model error was the lowesivihezy inference system was
constructed using 44 rules (M@ks=0.0020, MSEgs=0.0023).

3.4 Construction of fuzzy rule base

In this section, fuzzy models’ structures, for mstiing water saturation and porosity
based on seismic attributes, are explained. Tha iaigta for fuzzy rules generation
are cluster centers extracted using subtractivd@elung (for SFIS), and FCM (for
MFIS and LFIS). The methodology for constructiorfuzy rule base for estimating
water saturation and porosity using the clustetassrfollows:

For a set of m cluster centerg;{ W,..., U } in a dimensional spack!, we assume
that the firstN dimensions correspond to input variables anddaseM-N dimensions
correspond to output variables. Each veatprcould be decomposed into two
component vectorg (inputs) andy; (outputs). We consider each cluster centes a
fuzzy rule that describes the system behavior.ithagly, each cluster center
represents the rule (Chiu, 1997):

Rule i : If {input is near \} then output is nearw

Given an input vectax,, the degree of fulfillment of ruleis defined as Eq. (6)

— aAlxomvf
Eq. (6)



Where/ is the constant. The output veckas calculated via Eq. (7)

Z:I.Zinilriwi J+I.Zin:11TiJ Eq. (7)

This computational model corresponds to the MFI8 BRIS employing traditional
fuzzy if-then rules. Each rule has the followingnfo

if inputy is Ak & inputy is Az & ... then outputis G; & output is G ...

whereinpug is thej™ input variable anabutpuf is thej™ output variableA; is an
exponential membership function in iferule associated with th# input andB; is a
membership function in th&" rule associated with th&" output. For theé™ rule,
which is represented by cluster centedy; is given by Eq. (8)

A (Y) = exp (- 1/2(inpyt— )/ o) %) Eq. (8)
andC; can be any symmetric membership function centaredndw;, wherev; is
thej™ element ofv;, w; is thej™ element ofn, andos?; is the variance of clusterin

the j" rule.

In the this research project, in order to constoncof MFIS and LFIS for estimating
Sy and porosity, a fuzzy rule base was generatedugiwrd-CM-derived input and
output cluster centers. Each cluster center wasl use generate a Gaussian
membership function in each rule. That is, each msirepresented by a Gaussian MF
which is constructed from the center and standawdation of the corresponding
cluster. So the number of membership functionsiatiten rules for each input and
output dataset is then equal to number of the @lsstAs mentioned, the number of
the FCM derived clusters, for water saturation, wgsal to 31. Considering four
inputs and one output, 31 by 5 MFs were generaggticjpating in 31 fuzzy rules
(Table 2). Accordingly, 44 by 8 MFs were constrdcfer the porosity model. To
connect antecedents of each rule,rttie operator was used. As mentioned, the fuzzy
rule base structure for MFIS and LFIS is similahe¥ main difference is in
implication method. In MFISmin operator was used for implication, whereas in LFIS
product operator was used for this purpose. For the bethniques, the centroid
defuzzification method was applied.

In SFIS, input MFs are of a Gaussian type. Theyewmmstructed using the cluster
centers obtained from subtractive clustering (48ters forS, and 50 clusters for
porosity). However, output membership functions Bmear equations constructed
from inputs. For example, output MF1 of tBg model, which is the consequent of

rule no. 1, is constructed from four seismic atti@s, as shown below:



Output MF1= y,*Time + vy,*Average frequency + y3*Filterl5/20-25/30 +
v4*Dominant frequency s Eq. (9)
In this equation, parameteys, v2, y3 andy, are coefficients corresponding to input
seismic attributes. Parametgris the constant of each equation. These paramesters
obtained by linear least squares estimation. Whiths¢ explanationsn order to
estimateS,, there will be 43 by 5 output MF parameters (Ta)leAccordingly, there

will be 50 by 8 parameters showing coefficients andstants of the output MFs for

the porosity estimation model. It is necessary to meenthat in this paperonly the

MF parameters for water saturation model are sholmput and output MF

parametersfor the porosity modelswere calculated in a similar process.

3.5 Construction of a Committee Fuzzy Interference System - CFIS

In this part of research, a CFIS was constructethi® overall prediction of
petrophysical data by integrating the results eflppted data from SFIS, MFIS and
LFIS, each of them having a weight factor showisgcontribution in the overall
prediction process. At the first step, outputshef three fuzzy inference systems were
averaged for predicting the target data, specificabch of them has the weight value
of 0.333. This output will be used as one of thpests of the CFIS.

In the second step, a genetic algorithm-patterrchdaol was used to obtain an
optimal combination of the weights for constructthg CFIS. The fitness function for

GA-PS was defined as below:
|

MSE.\s = le K(B:10;+8,0,+B:05+8,0,-L,)° Eq. (10)
i=1

This function shows the MSE of the CFIS, for therting step predictions,
wheres, ,5,, B, and B, are the weight coefficients corresponding to thigpots of

Sugeno, Mamdani, Larsen and simple averaging methsgectivelyO; andL; are
output and target values, respectively, & the number of test data points (76
samples). The parameters of GA-PS are describfdlasing:

The population is of a double vector type. Thaahpopulation size is 25, which
specifies how many individuals are in each genematnitial range is [0, 1]. This
parameter specifies the range of the vectors immikial population. The selection
function was chosen as stochastic uniform, whiatosks parents, for the next

generation, based on their scaled values fromitiest scaling function. The



crossover function is scattered which creates daiarnbinary vector and selects the
genes where the vector is [1] from the first pgrant the genes where the vector is
[0] from the second parent, and combines the genfssm a child. The value of the
crossover fraction is 0.78. This parameter spectfie fraction of the population that
could be seen in the crossover children. The mardtinction is Gaussian which adds
a random number, or mutation, from a Gaussianilligton, to each entry of the
parent vector. Parameters controlling the mutatienspecified as thecale valueof 1
andshrink valueof 1. The scale value controls the standard dewatf the mutation

at the first generation. This parameter is mukiglby the range of the initial
population. The shrink value controls the rate hichv the average amount of
mutation decreases. The standard deviation decéasarly so that its final value
equals 1. The hybrid function was chosen as pastesnch. This is another
minimization function that runs after the genetgoaithm terminates.

Stopping the generation of GA was chosen at a wald€0. After 100 generations,
change in the fitness function values over Statlegations was insignificant, and the
mean fitness values for water saturation and ptyregere fixed in 0.00915 and
0.00157, respectively. The results of running teeegic algorithm, with pattern
search hybrid function including best and mearefgwalues, average distance
between individuals, fitness scaling and calculaisates for the porosity case, are
shown in figure 9. Finally, the CFIS was constrdatising the GA-PS derived
coefficients for the results of SFIS, MFIS, LFISdasimple averaging method. That is,
the final estimation of water saturation and pdyosias done through Eqg. (11) and
Eq. (12), respectively.

SWps = 0.303% Sy +0.127% S +0.098% S g +0.472% SW, 0 00e Eq. (11)

Pcrs = 0.087* P t0.249%9 s +0.214% LFIS+O'450*¢Average Eg. (12)

3.6. Design of a probabilistic neural networ k

Probabilistic neural network (PNN) is a forwarddegetwork, built with three layers,
and can be used for predicting both continuoussurete (classification) data. It was
first proposed by Specht (1990) and is based astarete concept between objects. It
is a very fast and efficient method to map a sehpdit data to their outputs. In PNN,
for a vector of inputx, each new output sampi®,(x,) is calculated as linear

combination of then data points in the training data using the follegvequation.



Eﬂ—, i BXL |:— {x xl..:.:
Oy (x) =75 P =g Dl (Eq. 13)

T, exp(—Dixa)

whereD(x,x,) is the distance between the input paiaind each of the training
points, and it is calculated as follows:
D(x;x;'j = ij:;[ (il__xl'l'j: (Eq 14)

Py
wherek is the number of input data, apglis the distance scale factor for each of the
input attributes. The only parameter of the PNN tieeds to be optimized is the scale
factorg;. In comparison with the other types of neural mekysuch asnultiplayer
perceptronthat requires many parameters to be optimized, RNdNnple, fast and
efficient. The optimal value of; is obtained when the validation error is minimum.
The validation result for the" target sample, which is left out of the trainireal is

calculated, as shown below

_ Eia Oyjexp(—D(xgx])
D.'v's [xsj -

T, exp(~Dixgxy) (Eg. 15)
This process is repeated for all of the tesgenples so the mean squared error

between the measured and predicted output canldadatad. More details on

probabilistic neural networks can be found in Sp€t890), Masters (1995) and

Hampson (2001).

For optimizing distance scale facterrange was taken between 0.10 and 3.00. The

numbers of; values to try was set to 25. The optimized vabfes; are as below:

Water saturation cas:

Time: 0.244; Average frequency: 0.890; Filter 1528330: 2.484; Dominant

frequency: 2.787; Global;: 0.342

Porosity case:
Inversion result: 0.313; integrate: 0.301; Quadrattace: 0.804; Cosine

instantaneous phase: 0.864; Integrated absolutétadg 0.385; Amplitude
envelope: 0.121; Filter 15/20-25/30: 0.495; Glabal0.463

4. Resultsand Discussion

The correlation coefficient and graphical comparibetween measured and predicted
water saturation for the test samples using SFIESMLFIS and CFIS are shown in
figures 10a-d and 11a-d. According to the resuktsented in Table 4, and figures 10
& 11, the MSE of SFIS, MFIS and LFIS models in test data are 0.0136, 0.0161,



and 0.0169, which correspond to the correlatiorifadent values of 0.868, 0.865,
and 0.855, respectively. Amongst the models usetf bas provided more accurate
results, compared to MSE of SFIS, MFIS. Applyinggie averaging methods for the
combination of the outputs of the three modelsprasided the correlation
coefficient of 0.885 and the MSE of 0.0108, whiblows improvement in
comparison with individual models. The optimal conaion of the weights in the
CFIS was obtained by a GA-PS. The inputs of theSCEe the outputs of three fuzzy
models and simple averaging method. The GA-PS elénveights for SFIS, MFIS,
LFIS and their average are 0.303, 0.127, 0.0980a4cR, respectively. The MSE of
the CFIS for the test data is 0.0091, which comasdp to the correlation coefficient
of 0.896. That it, the CFIS shows a significant ioyement for the estimation &,
from seismic attributes. It performs better thay ane of the individual intelligent
systems acting alone f&; prediction. Also it has provided a small improveria
comparison with simple averaging method. Applicaibd the CFIS for porosity
estimation from seismic attributes confirms thef@enance of the introduced
methodology (figures 12 and 13). According to theults presented in Table 4 and
figures 12 & 13, application of the MFIS resultgle lowest error for porosity
estimation (MSE=0.0020, CC=0.879) among fuzzy n®deting alone. Application
of the simple averaging method improves the re§M&E=0.0017, CC=0.891).
Finally, the CFIS decreases the estimation errdaoup0015 which corresponds to
correlation coefficient of 0.899.

As it is evident from the results of this researokegrating the outputs obtained from
different systems can improve the accuracy of Htenations. The simple averaging
method is a kind of committee machine in which eaicthe inputs has equal
contribution in the overall estimation. However BFIS, introduced in this study, is
an advanced type of committee machine in whiclofitenal combination of weights
is obtained by an optimization method, such as GA{R order to evaluate
performance of the designed CFIS, a neural netwaidkused as an alternative
method for estimating water saturation and porostgsults show that a probabilistic
neural network (PNN) provides more reliable resaitsiparing to the other methods.
Performance of the PNN was close to the best iddalifuzzy inference system
(MSE of 0.0140 foi5, and 0.0019 for porosity). That is, the CFIS methedorms

better than neural network and is the best indaiduzzy inference system.



Lastly, using the CFIS, constructed for this reslkeaBD seismic data of Ghar
reservoir were converted to petrophysical data. $vimwing distribution of CFIS
estimated water saturation and porosity for the Gbpar reservoir are shown in
figures 14 and 15, respectively. As the resultssitbe Ghar Sandstone is a high
quality reservoir unit over the Iranian offshoréieid. Porosity distribution over the
reservoir in nearly uniform (mean=0.135). Towats $outh east, porosity increases
gradually. Water saturation in the central andmenest sector of the reservoir is low

(<50%), which corresponds to the hydrocarbon bgaanea.

5. Conclusion

Fuzzy inference systems including Sugeno, MamdadhiLaarsen were used for
formulating petrophysical data to seismic attriguteesults indicate that, by the
integration of different outputs into a CommittagzFy Inference System, using the
GA-PS technique, a considerable improvement inracguof the target predictions
can be achieved.

The CFIS performed better than any individual furmydels for estimating water
saturation and porosity parameters. Also, it preglitbwer errors than the committee
machine constructed through simple averaging mefhloe CFIS has a simple and
easy structure, and when there are multiple wagshee a problem, it can provide
smaller errors when compared with the averagel @xglerts, and with little
additional computation.

The methodology introduced in this study is ablegbmate petrophysical data from
a large volume of 3D of seismic data. This canaase exploration success rates and
reduce costs through the application of more ridiabitput results in hydrocarbon

exploration programs.
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Nomenclature

A, B

a.

B, B2, B3, Ba

D(x,x,)
FCM
FIS
GA-PS

L
LFIS
LOM

MF
MFIS
MIMO
MISO
MOM
MSE

Input fuzzy sets (membership functions)

Firing strengttof i fuzzy rule

Constants in constructing output membership funstiof Sugeno
model

Output fuzzy set (membership function)

Truncated output fuzzy set for tH&rule

Aggregated output fuzzy set

Correlation coefficient

Distance between the input poxiand each of the training points
Fuzzy c-means clustering

Fuzzy inference system

Genetic algorithm-pattern search

Number of training samples in constructing CFIS aadral network
Target petrophysical data

Larsen fuzzy inference system

Large of maximum

Number of clusters

Membership function

Mamdani fuzzy inference system

Multiple inputs and multiple outputs

Multiple inputs and single output

Mean of maximum

Mean squared error

Number of fuzzy rules

Outputs of fuzzy models

Output of the probabilistic neural network

Validation result of the probabilistic neural netwo

Probabilistic neural networks

Coefficients of output membership functions in Sugéuzzy model
Distance scale factor

Porosity




RB

SFIS
SOM

Ti

O'ij

Ui

He, (2)
He: (2)
Ha (%)
Ha (%)

i fuzzy rule

Constant of output membership functions in Sugeray model
Fuzzy rule base

Weight coefficients of MFIS, LFIS, SFIS and averag¢éhem,
respectively

Water saturation

Sugeno fuzzy inference system

Small of maximum

Number of fuzzy rule base with MISO

Degree of fulfillment of rule

Variance of clusterin jth rule

Sum operator in fuzzy sets

i™ cluster center

Grade of membership of elemerin output fuzzy se€ for i rule
Firing strength of™ fuzzy rule

Grade of membership of elemegtin i™ input fuzzy sefA
Grade of membership of elemagtin i input fuzzy seB
Grade of membership faf fuzzy rule

i cluster centers gf" rule in input space

i™ cluster centers gf' rule in output space

Input data for fuzzy sets and neural network

Constant

Output of fuzzy set
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