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Abstract: In this study, the quantification and incorporation of pore geometry, a qualitative parameter, and as a 

source of dynamic information, will be demonstrated in the integrated reservoir studies. To quantify pore 

geometry, Mercury Injection Capillary Pressure (MICP) curves have been exploited. For each MICP curve, 20 

parameters were derived and Multi Resolution Graph based Clustering (MRGC) was applied to classify the 

curves into 9 representative distinct clusters. The number of clusters was determined based on petrography and 

cluster analysis. The quantified pore geometry in terms of discrete variable, have been called Pore-Facies, and 

like Electro-Facies and Litho-Facies could be used in facies modeling and rock typing phases of integrated study. 

Dependency of dynamic reservoir rock properties into pore geometry makes the Pore-Facies as an interesting 

and powerful approach for incorporation of small scale dynamic data into reservoir model. 

A comparison among various facies definitions proved that neither Litho-Facies, nor Electro-Facies is capable to 

characterize dynamic rock properties and the best results were achieved by Pore-Facies method. Based on this 

study, it is recommended that for facies analysis in reservoir modeling, methods based on pore characteristics 

such as Pore-Facies, introduced in this article, be used rather than traditional facies that rely on matrix properties. 

The next generation of the reservoir models which incorporate Pore-Facies based rock types, will provide a basis 

for more accurate static and dynamic models, a narrower range of uncertainty in the models, and a better 

prediction of reservoir performance. 
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1. Introduction 

Geological modeling of a reservoir represents one of the most important phases in the workflow of a typical 

reservoir study, concerning the volume of work involved and the impact on the final results. The relevance of a 

sound geological model in the overall reliability of a reservoir study has been repeatedly emphasized in the 

technical literature (Graaff and Ealey, 1989, Martin et al., 1999, Seifert et al., 1999, Doligez et al., 1999), being 

long recognized that the static description of the reservoir, both in terms of geometry and petrophysical 

properties, is one of the main concerning factors in determining the field production performance (e.g., 

Cosentino, 2001).  
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Geological model includes static properties such as geometrical properties i.e. structural and stratigraphic 

models and models of rock or petrophysical properties such as facies, porosity, and water saturation. Assigning 

parameters of rock-fluid interactions and fluid properties to each cell of static model, results in dynamic model. 

Wettability, capillarity, relative permeability and residual oil saturation are considered as rock fluid interactions.  

In most of the operational studies, it is a common tradition to exploit the relationship between static 

description and field performance as a measure of the accuracy of the geological model. In other words, the 

geological studies are often performed using static information alone, i.e. seismic, log and core data, while the 

dynamic information is used only to check the observed reservoir performance. This could be referred to as an a 

posteriori control. In an integrated geological model, however, the dynamic information should be better used as 

a direct input, i.e., a priori constraint.  

A correct description of petrophysical properties of the reservoir rock and understanding the close 

relationships existing between porous network, rock properties and fluid flow and incorporating reservoir 

dynamic properties into static reservoir models in all scales forms the cornerstone of the integrated reservoir 

study and is therefore a fundamental requisite to correctly represent the dynamic behavior of the field in the 

numerical simulation study.  

For integrated reservoir characterization it is possible to incorporate dynamic reservoir information in all 

scales and in all stages of static modeling. However there are two problems for integration of dynamic data into 

static models. First, while reservoir models are quantitative in nature, most of geological variables are inherently 

qualitative and hence before using such variables in any model, it is necessary to represent them by some 

quantitative parameters. For example, pore geometry is a micro scale geological variable, and has been treated as 

a qualitative parameter. The Second issue which must be considered is the phases of static modeling that 

dynamic data can be incorporated. For example, pore geometry is a parameter which after quantification, can be 

used among the various stages of static models, in facies analysis and rock type definition.  

Discussing all static models and how to incorporate dynamic data in each model is beyond the scope of this 

article. In this study only the quantification and incorporation of pore geometry as a controlling parameter for 

most of petrophysical properties, in facies analysis and rock typing, will be discussed. Usually facies analysis in 

an integrated reservoir study consist of 1- facies definition at cored sections, 2- Prediction of defined facies for 

un-cored wells, 3- Population of facies for whole reservoir using Geostatistical techniques. The emphasis of this 

study is definition of facies in cored section. The concepts of pore characteristics i.e. pore type and pore 

geometry will be introduced and various definitions of these parameters and different techniques for quantifying 

pore geometry will be discussed briefly. The usefulness of MICP (Mercury Injection Capillary Pressure) curve 

as an indicator of pore geometry will be illustrated using 231 high pressure MICP curves from Dorood field 

located in Iranian sector of the Persian Gulf and a method for quantification of a qualitative parameter like pore 

geometry will be shown using parameterization and classification of MICP curves. For the purpose of MICP 

curve parameterization, 20 attributes will derived for each curve and MRGC (Multi Resolution Graph based 

Clustering) will be applied for clustering of curves into 9 representative Pore-Facies.  
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Then, the stage at which such a quantified parameter could be used in an integrated reservoir study will be 

illustrated. Various definitions of conventional facies analysis like Litho-Facies, Electro-Facies and Petro-Facies 

and also the concept of rock typing will be explained in brief and the basics for Pore-Facies, which in contrast 

with other facies definitions is based on pore characteristics will be demonstrated.  

To compare various techniques of facies analysis in characterization of dynamic reservoir properties and 

to illustrate advantages of Pore-Facies analysis and direct reservoir rock typing for permeability prediction, 

clustering of MICP curves based on various facies definitions and also the sensitivity of this facies to 

permeability variations will be shown. And finally the improved method of MICP curve averaging instead of 

traditional Leverett J-Function will be discussed. 

 

2. Geological Setting 

Dorood oil field, the largest Iranian offshore oil field, 25 km long and 5 km wide, is located offshore in the 

northern part of the Persian Gulf area. This field partly underlies the Kharg Island (figure 1). The Dorood 

structure is an elongated anticline plunging toward north and north-east and is linked to both Zagros and Arab 

orogenies. Lower Cretaceous Fahliyan Formation is the main proven pay zone of Dorood structure. The major 

lithology is limestone capped by the micritic limestone of Lower Gadvan Formation which is also identified as 

the seals of the reservoir. Fahliyan Formation is divided into Manifa member, corresponding to the best reservoir 

zone; middle Yamama section, corresponding to the major reservoir interval; and upper Yamama section 

corresponding to poor reservoir quality limestones (figure 2). The whole reservoir interval is made of limestones, 

with very limited content of dolomite and anhydrite.  

 

3. Available Data and Laboratory Procedures 

Up to now, more than 90 wells have been drilled in Dorood Field. A complete suite set of well log data from 80 

wells were available for this study. Core data set were carefully examined, and a total of 3294 core porosity-

permeability, 231 Mercury Injection capillary pressure and 400 thin sections from Wells D-101P, D-103WI and 

D-106P were selected for this study. 

For measuring porosity and permeability, total core gamma was first run on the core, one and half inch 

diameter plug samples were drilled, and samples were cleaned in a soxhlet extraction apparatus using hot toluene 

and methanol. Samples were then dried in a regular oven at 116°C. Weight, length and the diameter of each plug 

sample were measured and grain volume and grain density were then determined using Core Laboratories 

Ultraporosimeter. Porosity and permeability values were measured at a net overburden pressure of 29500 kPa 

(4279 psi) using CMS - 300TM. All reported permeabilities are Klinkenberg permeability. 

For MICP curves, each sample, trimmed to approximately 1 by 1 inch. The clean dry core samples were 

weighed and each placed in the bulb of a penetrometer. The sample and penetrometer were weighed together. 
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The penetrometer containing the sample was loaded into the low-pressure chamber of a Micromeritics Autopore 

II 9220 porosimeter. The penetrometer was evacuated to a pressure of less than 50 m of mercury, and then 

filled with mercury at a pressure of 3.45 kPa (0.5 psi). The bulk volume of the sample was determined at this 

point. Mercury was injected into the core plug at increasing incremental pressures from 3.45 kPa (0.5 psi) to 172 

kPa (25 psi). The injection pressure was reduced to atmospheric and the penetrometer was removed and weighed 

with the sample and mercury in place. It was then loaded into a high-pressure chamber of the Autopore system. 

The cumulative volume of mercury injected is increased by incremental pressure changes up to a maximum of 

approximately 413685 kPa (60,000 psi) with data being recorded at each pressure. Monitoring the change in 

pressure over a specific period of time, (120 seconds), identifies equilibrium. If the pressure remains above 

99.5% of the set injection pressure over this period then equilibrium is assumed otherwise pressure is reset, and 

monitored again over the equilibration time. This is repeated until equilibration is achieved at each pressure. 

Sample weight, sample and penetrometer weights with and without mercury were used to calculate grain density 

and bulk density. Volumes of mercury injected at each injection pressure were recorded. Cumulative volumes of 

mercury injected at each stable pressure are expressed as a fraction of the total pore volume of the sample.  

 

4. Pore Characteristics; pore type and pore geometry as a source of dynamic data 

Geologists and petroleum engineers have always been interested in the study of the rocks’ pore characteristics as 

they regulate the storage capacity and deliverability of hydrocarbon reservoirs (Wardlaw and Taylor, 1976; Bos, 

1982). Pore characteristics are classified as pore type and pore geometry, each of which has completely different 

nature and definition. They are the controlling parameters for most of petrophysical properties of reservoir rocks 

(Leverett, 1941; Archie, 1942, & 1952; Biot, 1953, Morgan and Gordon, 1970; Jackson et al., 1978; Wilkens et 

al. 1984; Tao & King, 1993; Xu and White, 1995&1996; Tiab et. al., 2004). Therefore, understanding complex 

variation in pore geometry and pore type is the key to improve reservoir description and exploitation. Analysis of 

pore geometry allows reservoir characterization to be pore system oriented and the resulting reservoir models are 

based on characteristics of pore system.  

Pore type is the term for classifying porous part of the rock into groups of (always) genetically related 

pore spaces characterized by similar depositional and diagenetic history. Each pore type is identified based on its 

origin and geological processes which were active during the sedimentation and lithification of the rock. Several 

attempts have been made at integrating engineering and geological information and for the purpose of 

classification of pore types (Archie, 1952, Choquette & Pray 1970, Lucia, 1983; 1995b; 1999 and Lønøy, 2006).  

Pore geometry is the other pore characteristic that has more direct relation with petrophysical properties. 

The fundamental relationships between pore geometry and basic rock properties (e.g., effective porosity, 

absolute permeability, etc.) are well-documented in the petroleum and petrophysics literature (Morgan and 

Gordon ,1970, Wardlaw and Taylor, 1976; Bos, 1982, Xu and White 1995, 1996, Tiab et. al., 2004). One 

important advantage of pore geometry over pore type is that, it can be better represented by quantitative 
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attributes. Pore geometry refers to the architecture and internal anatomy of the rock. It is defined by textural 

properties of pores such as size, size distribution, shape, throat size, throat size distribution, aspect ratio, 

coordination number, pore arrangement and tortuosity. These parameters are combined to yield a classification 

of the various pores in the rocks. The term “pore geometry” as can be implied, is not a complete representative 

term for all of these attributes. In addition no individual technique is able to capture all of these attributes; 

instead each technique can handle some of them. In the following section, various techniques for 

characterization of pore geometry are discussed. 

 

5. Acquiring some measure of pore geometry 

Petrography, image analysis, mercury injection capillary pressure (MICP), and nuclear magnetic resonance 

(NMR) provide pore-geometry parameters useful for understanding variations in rock properties (Basan et al., 

1997). A few researchers used petrographic image analysis (PIA) to establish the relationship between pore 

geometry and rock properties. These studies attempted to overcome the limitations inherent in visualization 

techniques by classifying pore types based on measurement parameters (Ehrlich et al. 1984, 1991). MICP pore 

size is an area-equivalent diameter of the throats connecting the pore system. The MICP distribution contains a 

point (the turning point) that reveals where mercury first encounters the permeable network. This point identifies 

both critical pore size and connected porosity. Brownstein & Tarr (1979) showed that NMR relaxation rate is 

proportional to the surface area-to-volume ratio of pores in tissue. The early works of Brown & Gamson (1960), 

Seevers (1966) and Timur (1969) revealed the potential of NMR application in obtaining rock properties such as 

pore size distribution. NMR pore size is a derivative of the pore-surface volume ratio. Like MICP, NMR 

provides a pore-size distribution that represents the entire sample volume. Used individually, each laboratory 

measurement has a place in reservoir evaluation because each portrays the pore system in a slightly different 

way. MICP, PIA and NMR measurements differ, especially in the way they characterize the volume of the 

system (Basan et al., 1997).  

 

6. Mercury injection capillary pressure (MICP) 

Capillary pressure is the pressure difference existing across the interface separating two immiscible fluids. It 

critically affects initial reservoir fluid distribution and petroleum recovery during primary or enhanced 

production. The distribution of multiple fluids in reservoir pores is a function of capillary forces, which in turn 

are related to system wettability, fluid density and pore geometry. Capillary pressures data have, in the past, been 

used primarily to evaluate reservoir rock quality, calculate oil columns or estimate relative permeability 

characteristics. Today, capillary pressure measurements have widespread applications including calculation of 

original oil in place, detailed characterization of heterogeneous reservoirs, prediction of primary production, 

evaluation of enhanced recovery methods, evaluation of seal capacity, defining transition zone fluid distribution, 
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calculation of average water saturation, determination of connate water saturation and to determine initial water 

saturation.  

One of the most important and frequently cited applications for MICP curve is to derive absolute permeability 

from some attributes extracted from MICP curves which highlight the interdependency of these parameters 

(Purcell, 1949, Calhoun, et al., 1949, Burdine et al., 1950, Wyllie & Spangler, 1952, Thomeer, 1960, Swanson, 

1981, Wells & Amaefule, 1985). In addition to dependency of capillary pressure on reservoir properties, 

numerous researchers emphasized that the shape of the capillary pressure curve may be primarily affected by 

pore geometry (e.g. Rose & Bruce, 1949).  

It appears that MICP curves, that reflect capillary pressure of a reservoir rock, are suitable representatives 

for quantification of pore geometry and incorporation of dynamic data into reservoir models.  

 

7. Quantifying the pore geometry using MICP curves 

As it is evident from previous discussion, pore geometry is one of the most important sources of dynamic data 

for integration into static models. MICP curves can be used to extract pore geometrical properties which are 

important for both static and dynamic reservoir properties. For integration of pore geometrical parameters, 

however, the first step is to obtain some quantitative data from MICP curves. Although MICP curve is made up 

of connection of mercury saturation–pressure points which are numerical variables and hence quantitative by 

itself, but since the final goal is pore geometry and not the MICP curve itself, it is required to extract some 

parameters that are related to pore geometry. This stage of the work is called MICP curve parameterization. 

In addition to be usable in facies analysis of static model, it should be represented by a discrete variable. 

This step of the work is called classification. So, what we mean with quantification of MICP curves is, to 

parameterize and to classify these curves in such a way that each curve could be represented by a class label or 

category of discrete variables. This categorical variable, we call it facies, can be used directly for facies analysis 

and rock typing part of integrated reservoir study. 

 

7.1. MICP curve parameterization 

There is not a simple correlation between pore geometry and capillary pressure curve properties. Because, pore 

geometry by definition is not a simple metric, instead it is a complex parameter characterized by quantitative and 

qualitative properties. In addition, capillary pressure curve itself could not be represented by a single parameter. 

In fact the variety of capillary models and numerous parameters extracted from capillary pressure curve, which 

are related to some features of pore geometry by theoretical or empirical equations, arises from such a complex 

relationship. To solve this problem, it is possible to derive various parameters of capillary pressure curve and 

classify the curves accordingly.  
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As illustrated in figure 3, classifying capillary pressure curves by visual inspection alone is nearly 

impossible, because these curves span the whole range of the water saturation against the capillary pressure plot 

(figure 3). However, it is possible to extract some parameters from MICP curves (parameterization) and classify 

them into a number of discrete groups using clustering techniques (classification).  

In this study, we extracted two data sets from MICP curves. The first set includes the pressure equivalent 

of different water saturations. Numerous Capillary Models have been developed for this purpose to simulate the 

capillary pressure responses of rocks (Corey, 1954, Thomeer, 1960, Brooks & Corey, 1966, Van Genuchten, 

1980, Lenormand, 1990, Donaldson et al, 1991, Skelt and Harrison, 1995, Jing and Wunnik, 1998, Li and Horne, 

2002, Huet et al., 2005). No single method could handle all capillary pressure curves for whole range of water 

saturations, but it seems that a combination of Leverett J function and pore geometrical factor is a better 

representative than any single capillary model. In this study equivalent capillary pressure for 5, 16, 25, 35, 50, 75, 

84 and 95 percent saturations and also entry and threshold pressures, were extracted from MICP curves. The 

numbers are not arbitrary in that, 16, 50 and 84 and sometimes 25, 35 and 75 percent saturations make the 

plateau part of the curve and are used for pore throat sorting calculations. The 5 and 95 percent saturations were 

selected so that the lower and upper range of capillary pressure or pore throat sizes to be taken into account. 

It must be noted that it is not only the shape of the curves which is important but the relative position of 

the curves when is plotted on PC vs. saturation that depends on pore geometry must be also considered. The 

second data set extracted from MICP curves comprises the parameters which are related to pore characteristics 

via some theoretical or empirical relations. After cross-plotting these parameters versus permeability, attributes 

with highest correlation were selected for cluster analysis. These parameters are explained in the following 

section and are displayed in figure 4.  

Entry Pressure, Pe: It can be estimated from the initial shape of early injection into the sample and can 

be defined as the pressure at which the mercury first starts to be intrude into the sample.  

Threshold Pressure: The threshold pressure, where mercury begins to inject into the pore structure, is 

identified at the pressure where the rate of mercury injection increases rapidly. The threshold pressure, as 

defined graphically by Thompson et al., (1987), corresponds to the inflection point at which the curve becomes 

convex upward. Cumulative apparent injection up to this threshold pressure is subtracted as surface porosity 

from measured data before subsequent calculations are made.  

Pore Throat Radius: At any mercury displacement pressure the minimum radius of pore throat can be 

penetrated by mercury is given by Laplace's equation: 

Pc

C . .2
 = r

 cos
                                                         (1) 

where r is pore throat radius in m,  is interfacial tension between air and mercury kPa (0.0485 equal to 

485 dynes/cm),  is contact angle between air and mercury in degrees (140), Pc is capillary pressure in kPa and 

C is conversion constant. 
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Oil-Brine Capillary Pressure: Oil-Brine capillary pressure in reservoir condition is obtained from air-

mercury data by the following conversion: 




11

22
aHgob

 . 

 . 
 .Pc = Pc

cos

cos
                                    (2) 

where Pcob is oil-brine capillary pressure (reservoir) in kPa, PcaHg is air-mercury capillary pressure in kPa, 

2 is interfacial tension between oil and brine (reservoir) in kPa (0.003), 2 is contact angle between oil and brine 

(reservoir) in degrees (30), 1 is interfacial tension between air and mercury in kPa (0.0485) and 1 is contact 

angle between air and mercury in degrees (140). 

Mean Hydraulic Radius (MHR): MHR is the average pore throat size of the sample and is given by the 

following equation. This parameter is an Integral of pore throat radius (r) for all values of water 

saturations: 
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


                                   (3) 

where ri is the pore throat radius (micron) and Si is mercury saturation (fraction of pore volume) at i 

saturation. 

Height Above Free Water Level (HAFWL) and Fluid Contacts: Within the reservoirs, the fluids are 

distributed as a function of two forces: capillary pressure and buoyancy. At free water level where the pores are 

saturated with water, capillary pressure is zero and as the distance increases from this level capillary pressure is 

also increases. So we can use the capillary pressure data based on this relationship for obtaining an idea of height 

above free water level. Using this parameter vs. water saturation it is possible to have water saturation in each 

depth level which is important for distribution of water saturation throughout the field. HAFWL can be 

calculated as follows: 

)  (
Pc

 = H
ow

(res)

 
102.0                                                         (4) 

where H is height above free water level in meter, Pc(res) is equivalent oil/brine reservoir capillary pressure 

in kPa, w is water density at reservoir conditions (1.15 g/cm3) and o is oil density at reservoir conditions (0.67 

g/cm3).  

Oil columns can be calculated for any oil saturation, but, for comparison purposes, are fixed at 50% and 

75%. The numbers are not arbitrary in that a 50% oil saturation will commonly yield a marginal to fair well, 

while oil saturation of 75% or greater can be expected to yield good to excellent wells. The oil column required 

for 50% oil saturation provides an estimate of minimum vertical trap closure. 
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Pore Throat Size Distribution, PTSD: a graph of fraction of pore volume injected (v) versus pore throat 

radius can be constructed. Pore throat radius has been derived using Laplace’s equation. The differential of this 

gives a pore throat size distribution (PTSD) function. This function gives a numeric value for each pore throat 

size, which varies from 0 to 1. 1 will be assigned to most popular pore throat size and pore throat sizes which 

haven’t any value will be zero. 

)log(rd

dv
PTSD                                                       (5) 

PTSD is smoothed using 1-2-1 smoothing: 

4/)2( 11   iiii PTSDPTSDPTSDPTSD            (6) 

PTSD is then normalised to 1 as follows: 

Maxiizednormal PTSDPTSDPTSD /                               (7) 

The normalised pore throat size distribution function can be used to identify pore throat size groupings 

and the relative proportions of pore volume controlled by macro pore throats (>1.5m), meso pore throats (1.5 to 

0.5 m) and micro pore throats (<0.5 m), labelled as macro-ports, meso-ports and micro-ports, respectively 

(figure 4). 

Reservoir Grade, RG: RG indicates the reservoir quality of rock and is the area integrated under the 

MICP curve when the saturation and pressure are plotted linearly. While PTSD measures the range in pore throat 

size, RG gives a relative number to the size of the pore throats. A low RG number indicates large pore throats 

and ability to accept oil saturation at low capillary pressures. The larger the RG number, the smaller the pore 

throats and greater the capillary pressure needed to obtain economic oil saturations. RG shows better correlation 

with porosity than permeability. 

Pore Throat Sorting, PTS: as the name implies is a number that measures the sorting of the pore throats 

within the rock sample. In fact PTS provides a measure of pore geometry by applying a numerical value to the 

slope of the plateau found on a semi-log plot of capillary pressure data. There are several equations for 

calculation of PTS. One of these equations uses the sorting coefficient equation: 

2/1

Pr1

Pr3










essureQuartilest

essureQuartilerd
PTS                            (8) 

where the first and third quartile pressures are directly obtained from the MICP curve and reflect the 25 

and 75% mercury saturation pressure adjusted for irreducible water saturation. A PTS value of 1.0 represents a 

perfect horizontal plateau while values much above 5.0 pertain to curves displaying little or no plateau 

development. Another equation which sometimes better represents the plateau part of MICP curve and in this 

study was applied, uses mean values of 16, 50 and 84% mercury saturation pressure as follows: 
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3
845016 PPP

PTS


                                               (9) 

The significance of PTS centres on the rock’s ability to accept oil saturation. In well sorted rocks, once the 

threshold buoyancy pressure is obtained, oil will rapidly saturate the available porosity up to the maximum 

capacity. Poorly sorted pores require a pressure increase over a much broader range to obtain the same level of 

oil saturation. 

Pore Geometrical factor: In 1960, Thomeer observed that a log-log plot of capillary pressure could be 

approximated by a hyperbola. Thomeer described the hyperbola location on the x-y coordinate system by the 

position of the two end-point curve asymptotes, and he defined the extrapolated asymptotes on the x- and y-axes 

as the displacement pressure and the bulk volume occupied by mercury at an infinite pressure, respectively. 

Thomeer hypothesized that the shape of the hyperbola reflects the pore geometry, so he used the curve shape to 

define a pore geometrical factor. Thomeer assigned the pore geometric factor a value between 0 and 10, where 

low values represent large well-sorted pore openings and high values represent high levels of variation in pore 

opening sizes. The Thomeer model can be given as: 

 )/log(/ dc ppG

b

b e
S

S 



                                                    (10) 

where pc is capillary pressure (kPa), pd is capillary displacement pressure (kPa), Sb is Hg saturation 

(fraction), Sb∞ is Hg saturation at pc=∞ (fraction) and G  is pore geometrical factor (dimensionless). 

Pore Size Distribution (PSD): PSD reflects the pore size distribution in the same manner as does pore 

throat sorting. A method developed by Brooks and Corey (1964), can be used to estimate PSD. The technique 

involves determining the slope of the best fit line through a log-log plot of J-function versus Sw. PSD is then 

calculated as -1/slope of the line. It is also possible to cross-plot J-function (on the Y axes) and Sw (on the X axes) 

in linear scale, but instead of linear function, a power law equation is used. Here the exponent of independent 

variable (Sw) will show the PSD. 

Swanson's parameter: The technique involves determining Swanson's parameter (Sb/Pc)A (where Sb= 

mercury saturation, % bulk volume) which is related to the effective pore space contributing to fluid flow and 

the corresponding injection pressure (Swanson, 1981). The Swanson parameter is determined by calculating 

(Sb/Pc) at all pressures for any sample and taking the maximum of these values. It is recommended that a cross-

plot of actual measured permeabilities against the Swanson parameter be used to better define the correlation 

coefficients for the formation in question. 

 

Cross-plots of various parameters extracted from MICP curves versus permeability along with their R2 are 

displayed in figure 5. Since in many of studies, relationship between porosity and permeability has been used as 

a tool for estimation of permeability in un-cored wells; as it is believed that porosity is a parameter which 

controls the permeability, cross-plot of porosity and permeability is also displayed in this figure. An interesting 
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observation here is that, while the R2 between porosity and permeability is less than 0.6, most parameters 

extracted from MICP curves, show R2 greater than 0.8, much larger than that of porosity which is a significant 

improvement and highlights this point that these parameters have more control on permeability. One more 

interesting observation is that, equivalent pressure of 35% mercury saturation has the largest R2 with 

permeability, something that first was documented by Winland. 

7.2. Clustering and classification of MICP curves  

Clustering is a process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called clusters 

such that objects belonging to the same cluster are similar, while those belonging to different ones are dissimilar. 

Clustering is an unsupervised classification where the class labels and the number of classes are unknown. In this 

study a technique introduced by Ye and Rabiller (Ye and Rabiller, 2000) known as MRGC (Multi-Resolution 

Graph-based Clustering) was tested and applied successfully for MICP curve classification. MRGC is a multi 

dimensional dot-pattern-recognition method based on non parametric K-Nearest-Neighbor (KNN) and graph 

data representation. KNN classification which is based on Euclidean distance between a test sample and the 

specified training samples is one of the first choices for a classification when there is little or no prior knowledge 

about the distribution of the data. KNN classification was developed from the need to perform discriminant 

analysis when reliable parametric estimates of probability densities are unknown or difficult to determine. 

Methods based on graph theory first constructs a connected graph where data points are linked by arcs according 

to their proximity relationship (Ye and Rabiller, 2000).  

Applying MRGC, the underlying structure of the data is analyzed, and natural data groups are formed that 

may have very different densities, sizes, shapes, and relative separations. MRGC automatically determines the 

optimal number of clusters, yet allows the geologist to control the level of detail actually needed to define the 

Electro-Facies (Ye and Rabiller, 2000). It must be noted that it is not the method of clustering which is important 

but the performance of that method for target data set. Since performance of MRGC in classifying MICP curves 

was better that other clustering methods tested in this study such as Dynamic Clustering, Self Organizing Maps 

and Ascendant Hierarchal Clustering we decided to use this method. In addition this method is flexible when 

merging or splitting the clusters. 

 

From 20 parameters derived from MICP curves (figure 5) 14 of them, with better correlation with 

permeability, were selected for cluster analysis. These parameters and their mean values for each cluster are 

listed in Table 1. An important decision in any clustering practices is the number of clusters. In this study, based 

on petrographical analysis, 9 representative clusters were identified. This approach is also to some degrees 

subjective and the geologist may decide for example to merge cluster#4 and 6 or split them. As the number of 

clusters increases the accuracy of assigning average curves will be better but the number of samples and 

confidence with master curve will be decreased.  
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As illustrated in figure 6, we successfully subdivided the MICP curves into discrete classes using this method. 

The similarity of the MICP curves in clusters is relative rather than absolute. In fact it is not possible to find two 

MICP curves which are exactly similar however classifying the curves into 231 categories is also impossible. 

What practically can be done is to classify the similar curves in one category but of course there will be some 

differences among the curves in one cluster. For each cluster the mean representative curve is also shown. This 

master curve has been determined directly by averaging the PC curves in that cluster. Using traditional facies 

definitions, it is necessary at first to convert the PC to J-Function. Each class represents different pore 

characteristics and hence different petrophysical properties. Each class label that is a number from 1 to 9 is a 

categorical variable in which the number has not any absolute value but each number is representative of 

different pore geometry. 

Using the procedure illustrated in the above sections including MICP curve parameterization and 

classification, a qualitative parameter like pore geometry is represented by a quantitative variable. The following 

section will explain the phases of static modeling in which this quantitative variable can be used. 

 

8. Traditional Facies analysis and rock typing 

Quantification of pore geometry is a first step of incorporation of dynamic data into static models. But the next 

question is that, how and in which phases of static modeling, this number can be implemented. The answer will 

be demonstrated in the following discussion on facies analysis and reservoir rock typing. 

There is not a unique definition for rock typing and most of the times it has been used interchangeably 

with facies analysis. Sometimes it refers to lithological properties, and in some literatures refers to petrophysical 

properties and sometimes the characteristic of pore body is the subject of rock typing. To be distinguished, here, 

we use the terms Reservoir Rock Type and Facies Analysis as an arbiters of reservoir engineers and geologists 

respectively.  

Facies analysis: a facies could be defined as interval/intervals of reservoir which could be differentiated 

from nearby's based on one or more properties of reservoir rock. Reservoir geologists use various facies 

definitions for reservoir description. Most of the time the methodology and data accessibility dictates the facies 

model. Litho-Facies and Electro-Facies are amongst the most commonly used and applicable facies definitions. 

Litho-facies analysis relies on lithological and textural descriptions of the rock and by definition requires the 

observation of actual rock samples in the form of core description or thin section studies. An electro-facies 

corresponds to a cluster of closely spaced points that have similar log responses with the aim of presenting a set 

of n log readings at a given depth level as a point in n-dimensional space (Serra and Abbott, 1982; Serra, 1986, 

Davis, 1986; Doveton, 1994; Tabachnick and Fidell, 1996). In some literatures the term rock fabric that refers to 

the geologic description of particle size and sorting based on the assumption that pore-size distribution is related 

to rock fabric and controls permeability and saturation is also used (Lucia, 1983, 1995). Each facies is assigned a 
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number that doesn't has any absolute meaning however they may be sorted according to reservoir quality. For 

some facies definitions it is also possible to have a lithologic or reservoir quality description (Litho-Facies).  

Reservoir rock typing is a process of classifying reservoir rocks into distinct units. From geological point 

of view, it is characterized by similar geological conditions, deposited in the same sedimentary environment and 

undergone through similar diagenetic alterations. From the reservoir engineering point of view it is characterized 

by similar fluid flow properties. Based on this definition, given rock type is imprinted by a unique permeability-

porosity relationship, capillary pressure profile (or J function), and set of relative permeability curves. In another 

word, a reservoir rock type is an interval of rock characterized by unique pore geometry (not necessarily a 

unique pore type). For each rock type the dominant pore type will be taken into account. In terms of reservoir 

modeling, each reservoir rock type is a class of facies characterized by the same relative permeability, capillarity 

and fluid saturations. 

The industry accepted approach for reservoir rock typing, starts from facies analysis, which is usually 

done by reservoir geologist. Then it is tried to assign one capillary pressure and relative permeability curve to 

each facies. This part of basic reservoir engineering, is usually done by reservoir engineer. This procedure of 

facies analysis and reservoir rock typing causes serious problems in both static and dynamic reservoir models. 

The fundamental controlling phenomena for nearly all of petrophysical properties is the quantity, shape, 

size, type and connectivity of the pore system, i.e. the pore characteristics of the rock. The implicit assumption 

beyond all facies models are that, they can be, somehow linked to pore characteristics but this link is not so 

straightforward and most facies definitions, fail to do so. There are some problems and hence source of error 

with traditional facies analysis and rock typing.  

The first problem arises from traditional facies definition itself because most of the facies models are 

based on characteristics of solid framework of the rock, while reservoir rock type is identified based on 

parameters of pore space of the rock. Litho-Facies analysis relies heavily on lithological and textural description 

of the rock matrix. It is necessary to remember that in our sampling of formations, we are observing the sum of 

the various processes that affected the rocks from their initial creation through their particular burial history to 

their present-day depth and state of diagenetic alterations. It is this combined effect that gives rise to the 

observation that, commonly, subdivisions of formations based upon solely lithostratigraphic criteria frequently 

fail to capture the petrophysical variability of the rock adequately. 

In Electro-Facies analysis the properties of interest could be the basic formation properties that we seek to 

measure in petrophysical analyses, like, density, resistivity, hydrogen index, acoustic travel time, nuclear 

magnetic resonance etc., or they might be the formation parameters such as porosity, permeability, capillarity 

and fluid saturation. The problem here is that, most of the times, the link between measured log and desired 

reservoir property is poorly defined, especially this is the case with pore geometry. 

The second problem with traditional facies analysis is that, Litho-Facies and Electro-Facies analysis, just 

classifying the reservoir rock without taking into account any dynamic properties such as capillarity, relative 
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permeability or wettability of the rock. From the reservoir modeling point of view, most facies definitions are 

based on static properties such as porosity and facies, while reservoir rock type is based on dynamic properties.  

The third problem associated with traditional facies analysis arises from the averaging of each 

petrophysical properties for each facies. Since the samples falling into a specific cluster have a wide range of 

petrophysical properties, the high and low values which are especially important from the reservoir dynamics 

point of view, will over or underestimated. 

The fourth problem with traditional facies analysis is the procedure with rock typing. Generally after 

Litho-Facies or Electro-Facies analysis and identification of representative number of facies, it is tried to assign 

one capillary pressure curve to each facies. For assignment of capillary pressure curve to each facies it is 

necessary at first to average the corresponding capillary pressure curves of each facies. The problem here is that, 

MICP curves with varying range of pore characteristics will be averaged. These problems will be further 

illustrated in the following sections. 

Another problem with traditional facies analysis is the subjective nature of facies analysis. Any facies 

analysis is to some degree subjective and always there will be some differences among the vintages of facies 

classification performed by different reservoir geologists. Electro-Facies as an example is highly dependent on 

clustering method in that various clustering techniques result in different size and cluster numbers. The number 

of Litho-Facies defined depends on level of details considered in thin section study or core description; it is 

possible to do the subdivision of the reservoir rock exactly based on Dunham rock classification or to define 

some intermediate facies such as packstone/wackstone. This problem which arises from the nature of these facies 

definitions can only be partly handled (in terms of the number of clusters and assignment of reservoir quality 

indexes) considering some petrophysical measurements (usually porosity and permeability). Pore facies as 

mentioned earlier is also to some degree subjective however since this facies definition is based on pore 

geometry, finding the number of clusters and defining the reservoir quality of each facies is much easier and it 

doesn't require further data or analysis. 

 

9. Pore-Facies, a new method for facies analysis and direct rock typing 

Grotsch and Mercadier (1999) used a petrophysically-based definition of reservoir rock types (RRT) for their 

reservoir model input because of the nonlinear relationship between porosity and permeability in the 

Malampaya-Camago reservoir. Each RRT was characterized by its pore geometry, an average porosity, an 

average permeability, an average gas saturation, and a saturation-height function, but not necessarily by its 

Litho-Facies. Emphasis was on pore geometry, pore throat connectivity and core-derived permeability cutoffs.  

This work by Grotsch and Mercadier is an example of the next group of facies analysis in which the 

petrophysical properties of the reservoir rock is the main focus of the interpretation and we call them with the 

general term of Petro-Facies. Petro-Facies analysis is defined as the characterization and classification of pore 

types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word Petro-Facies 
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makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production 

performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction 

(Watney, 1999). Most of the times the contrasts between reservoir pore types and fluid saturations are reflected 

in changing patterns on the cross-plot of various properties extracted from well logs or measured on core 

samples, and can help discriminate and characterize reservoir heterogeneity. Petro-Facies analysis always is 

applied to distinguish flow units and including discriminating pore type as an assessment of reservoir 

conformance and continuity.  

Petro-Facies is a general term which may range from facies defined based on porosity-permeability cross-

plot to those which are defined based on pore geometry. In this study the facies are defined according to pore 

characteristics i.e. pore type and pore geometry and hence the facies defined based on this method is called Pore-

Facies. To describe the Pore-Facies, each cell of reservoir rock could be visualized as two distinct parts, the solid 

framework, or matrix, and the pores.  

It was demonstrated that pore geometry can be quantified using MICP curves. Hence we can come to this 

conclusion that, it is possible to do Pore-Facies analysis and direct rock typing using MICP curves. A sample of 

Litho-Facies analysis may be a thin section or a sample of core and a sample of Electro-Facies is various log 

readings at specific depth. However, a sample of Pore-Facies is a MICP curve. Each MICP curve after 

parameterization and classification will fall into one of the clusters which is characterized and identified from the 

other clusters, based on pore geometrical parameters, and since each cluster has a meaningful distribution of 

petrophysical properties we call it Pore-Facies. This facies can be treated like other facies definitions and can be 

used for facies modeling. figure 7 illustrates an example of thin section photomicrograph for Pore-Facies 

identified in this study with corresponding capillary pressure curve and pore throat size distribution. Pore-Facies 

in this figure are sorted with decreasing reservoir quality and as it can be inferred this new defined facies does 

not comply with Litho-Facies. As illustrated in this figure each facies has a distinct MICP curve. The 

corresponding petrophysical properties and main parameters extracted from MICP curves are listed in Table 2.  

 

10. Preparing the facies for incorporation into reservoir model 

The final step in every facies definition at cored sections is to average the parameters of samples falling into one 

cluster. The same procedure is applied for Pore-Facies analysis. In most geological modeling packages, facies 

model act as a constraint for petrophysical models, i.e. after population of facies through the reservoir, 

petrophysical properties are assigned to each cell of the model in such a way that the values of these properties 

will range between minimum and maximum values of corresponding properties in each facies. It is possible to 

create histogram of porosity, permeability and other petrophysical properties such as water saturation, and 

net/gross ratio. These values will be later propagated through the reservoir using geostatistical methods.  

After averaging the petrophysical properties for each facies, the corresponding capillary pressure will be 

assigned. The capillary pressure curves for rock samples from the same reservoir having different permeabilities 
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will be different. It is often necessary to average the capillary pressure data for cores believed to have the same 

pore structure in order to obtain one capillary pressure curve that can be used for reservoir performance analysis. 

A method for averaging capillary pressure data from various systems is the use of the Leverett J function 

(Leverett, 1941). Leverett proposed the J-function of a specific reservoir which describes the heterogeneous rock 

characteristics, more adequately by combining porosity and permeability in a parameter for correlation. The J-

function accounts for changes of permeability, porosity, and wettability of the reservoir as long as the general 

pore geometry remains constant. Therefore, different types of rocks exhibit different J-function correlations. All 

of the capillary pressure data from a specific formation usually can be reduced to a single J-function versus the 

saturation curve (Tiab et al., 2004). It is a dimensionless capillary pressure function and can be expressed as: 


k PcC

 = J .
cos

.
               (11) 

where J is Leverett capillary pressure function (dimensionless), Pc is capillary pressure in kPa,  is air-

mercury interfacial tension, 0.0485 kPa (485 dynes/cm2),  is air-mercury contact angle, degrees (140), k is 

permeability in md,  is porosity (fraction) and C is the unit conversion constant. 

The J-function has the effect of normalizing all curves to approach a single curve and is based on the 

assumption that the porous medium can be modeled as a bundle of non-connecting capillaries. Obviously the 

more capillary bundle assumption deviates from reality, the less effective the J-function correlation becomes. 

Porous media that have the same pore structure but different permeability and porosity will have the same 

Leverett J-function. If the porous media have different pore structures, then the Leverett J-functions for the 

different rocks will be different and will not plot as one curve (figure 8). 

One important improvement of Pore-Facies over the traditional facies definitions is that, finding the 

representative MICP curve is straightforward, because all curves with the similar properties will fall into a single 

cluster. In fact using Pore-Facies it is possible to find the representative average PC curve directly, by averaging 

the MICP curves in each cluster and of course without using the J-Function. In addition Pore-Facies has several 

advantages and improvements over J-Function and overcomes some of the main limitations of this method as 

listed below: 

1- The basic assumption beyond the J-Function is that the porous medium can be modeled as a bundle of 

non-connecting capillaries and any deviation from such assumption, less effective the J-Function will be (Slider, 

1983). Using the Pore-Facies approach it is not necessary to assume a certain theoretical model because it is 

based on real reservoir samples. 

2- When the MICP curves are in different shape and character the J-Function is used to bring the curves 

into a similar shape so that the averaging to be possible. This procedure of averaging causes some errors to be 

included into the reservoir model. Using Pore-Facies MICP curves with similar shape and signature and hence 

similar pore geometry will be grouped into one single cluster and so this method is inherently innocent of the 

problems associated with J-Function. 
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3- As indicated in equation 11, for application of J-Function the respective porosity and permeability of 

the sample shall be given, but this is not the case with Pore-Facies.  

 

11. Results and discussion 

To compare different facies definitions and for illustration of advantage and limitation of each method, Electro-

Facies and Litho-Facies analysis were also conducted on samples. 

Thin section description was done on 400 samples from 3 cored wells. The samples assessed for texture, 

grain size, composition, cements, grain types and pore types. All samples were found to comprise almost entirely 

limestone. Dolomite occurs in some samples but rarely exceeds 1%. Dunham classification was used for Litho-

Facies definition and it was found that there are eight main Litho-Facies as follow: boundstone, floatstone, 

rudstone, grainstone, packstone, packstone/wackstone, wackstone and mudstone. Electro-Facies were defined by 

cluster analysis on Gamm Ray, Density, Sonic and Neutron Porosity logs and with the assumption that the 

number of facies to be 9.  

Comparison among different facies definition has been done based on 2 criteria: a) Ability of the methods 

for classification of MICP curves into meaningful clusters; b) standard deviation of permeability and sensitivity 

of each facies definition to permeability variation. 

a) MICP curve classification: figure 9 shows the result of clustering using MRGC on cross-plot of Sonic, 

Gamma Ray, Neutron Porosity and Density. As it is visible, all facies are clearly well separated and it may be 

regarded as good clustering. However this clustering would not necessarily warranty the optimum classification 

of MICP curves. Figure 10 and 11 show the results of MICP curve clustering using Litho-Facies and Electro-

Facies respectively. As illustrated in both cases, curves with varying shape and signature and hence with 

different pore geometry and dynamic properties have been categorized into the same cluster. Figures 6, 10 and 

11 show the results of MICP curve clustering using Pore-Facies, Litho-Facies and Electro-Facies respectively. 

As illustrated in these figures, while the MICP curves are well separated using Pore-Facies, there is a lot of 

overlap on clusters of Litho and Electro-Facies. Obviously this misclassification will affect both static and 

dynamic reservoir models. It can be concluded that while electro-facies and litho-facies are good facies 

classification approach, they are not necessarily appropriate rock typing methods. 

b) Permeability: Carbonates are characterized by different types of porosity. They have unimodal, 

bimodal and other complex pore size distributions; this is why it is concerned about trying to extract the various 

parameters from the curves. That would results in wide permeability variations for the same total porosity which 

makes prediction of producibility very difficult. Numerous ways of calculating permeability from wireline logs 

have been tried. The most popular has been the porosity-permeability transform in the clusters of facies. A 

comparison among various facies definitions of Pore-Facies, Electro-Facies and Litho-Facies has been made in 

figure 12. This figure shows the mean (squares) and the standard deviation of permeability for each facies within 

different facies definitions. This figure shows that facies definitions based on Pore-Facies for permeability works 
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much better than Electro-Facies and Litho-Facies. The consequence of this smaller standard deviation will be 

reflected in smaller range of uncertainty in any permeability modeling which is constraint by facies.  

One important step in every facies analysis is the prediction of facies in in-cored wells based on 

commonly available data which is usually wireline logs. Pore-facies in this regard is similar to other facies 

definitions and it is possible to test and apply among the variety of proposed approaches. For example 

multivariate statistical techniques for electro-facies analysis have been applied by many workers to both clastic 

and carbonate reservoirs (e.g., Serra and Abbott, 1982; Widdicombe et al 1984; Serra et al 1985; Busch et al 

1985 Delfiner et al 1987; Sakurai and Melvin, 1988; Stowe and Hock, 1988; Anxionnaz et al 1990; Murray, 

1994; Hook et al 1994; Elphick et al 1996) Several techniques have been reported for litho-Facies prediction; 

Wolff and Pelissier-Combescure (1982) used principal component analysis, Delfiner et al (1987) used 

discriminant factor analysis, Methods relying on self-organizing maps (Baldwin et al 1990) and back-

propagation feed forward neural networks (Rogers et al 1992) were also used for the estimation of litho-facies 

from logs. Toumani et al (1994) used fuzzy clustering to determine lithology from well logs and Cuddy (1997) 

used fuzzy logic to predict permeability and lithofacies in uncored wells. Saggaf et al (2000) used neural 

networks for identifying both lithological and depositional facies from well logs and Saggaf and Nebrija (2003) 

used a method based on fuzzy logic inference to identify lithological and depositional facies from wire-line logs. 

Several authors have used soft computing techniques for estimation of permeability (Huang et al., 1996, Cuddy, 

1997, Fang and Chen, 1997, Huang et al., 1999, Kadkhodaie et al., 2006). In this study, to examine the 

suitability of pore-facies approach, the MRGC clustering method has been applied for the subdivision of the data 

space into 9 representative pore-facies and the corresponding relationships between porosity and permeability 

for each facies has been determined. After identification of the main responsive well log suite, based on the rank 

correlation, a classification tree approach was used for the population of pore-facies in the un-cored wells. Then 

applying the relevant porosity-permeability relation, permeability was calculated. The sensitivity of Pore-Facies, 

Electro-Facies and Litho-Facies to permeability variations are displayed in figure 13. In this figure the first track 

is GR, the second and third tracks display formation and reservoir zonation respectively. Tracks 4-6 are Pore-

Facies, Electro-Facies and Litho-Facies respectively. The blocked curves in these three tracks are measured 

permeability. As shown in this figure, any real variation in permeability is reflected in Pore-Facies; however this 

is not the case for the Electro and Litho-Facies. The conclusion here is that Pore-Facies which is based on pore 

geometry among the various facies definitions is the preferred approach for permeability prediction. 

Because of these advantages it is recommended that, for MICP curve averaging in the next reservoir 

modeling practices or in any refinement to previous models, the Pore-Facies approach introduced in this study to 

be applied.  
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12. Summary 

1- Incorporation of dynamic data into static model reduces the uncertainty associated both in static and 

dynamic reservoir models. It is possible to incorporate dynamic data in all scales and all stages of integrated 

reservoir studies. 

2- Pore geometry is a controlling parameter for most of petrophysical properties and small scale reservoir 

heterogeneities. With the incorporation of this parameter in reservoir model, most of petrophysical properties are 

considered. 

3- Pore geometry is a qualitative parameter. To include this parameter into a reservoir model it should be 

represented quantitatively. Petrography, mercury injection capillary pressure (MICP), image analysis, and 

nuclear magnetic resonance (NMR) provide quantitative pore-geometry parameters. In general, among the 

various techniques, MICP has the widest application and can handle more attributes than any other technique. 

4- For quantification of pore geometry, the first step is to obtain some parameters from MICP curves 

(parameterization) and the next step is classification of these curves into meaningful clusters. 

5- One approach for parameterization of MICP curves might be to get pressure (or pore throat size) 

equivalent of different water saturations. An alternative approach would be to extract some parameters which are 

related to pore characteristics via some theoretical or empirical relations. The first approach comprises the 

capillary models and second approach includes parameters like, threshold pressure, pore throat radius, reservoir 

grade, pore throat size distribution, pore throat sorting, mean hydraulic radius, etc.  

6- After parameterization of MICP curves, numerical data, i.e. parameters extracted from MICP curves 

will be used to classify the curves into a meaningful clusters to get a discrete variable i.e. facies, that can later be 

used in facies modeling. By applying the procedure including MICP curve parameterization and classification, a 

qualitative parameter like pore geometry will be represented by a quantitative variable. Result of MICP curve 

quantification is a discrete variable in which each curve or sample will be represented by a categorical number. 

7- Quantified pore geometrical properties which are discrete variables, similar to any facies definition, can 

be used for facies modeling. Since the new definition of facies is based on pore characteristics, it is called Pore-

Facies. While the conventional facies definitions are based on solid part of the reservoir rock, Pore-Facies relay 

primarily on porous part of the rock and specifically pore geometry.  

8- Dependency of dynamic reservoir rock properties into pore geometry makes the Pore-Facies as an 

interesting and powerful approach for incorporation of small scale dynamic data and heterogeneity into reservoir 

model.  

9- Different facies definitions i.e. Litho-Facies, Electro-Facies and Pore-Facies could be compared based 

on: ability of these methods for classification of MICP curves into meaningful clusters, standard deviation of 

permeability within each facies definition and sensitivity of each facies definition to permeability variation. 

Comparison of various facies definitions shows that Pore-Facies has the best performance for classification of 

MICP curves into meaningful cluster and has the smallest standard deviation of permeability within each class. 
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10- Pore-Facies can be used, instead of Leverett J-Function, as an improved method of MICP curve 

averaging. This approach not only overcomes the limitation of traditional method of PC curve averaging (J-

Function), i.e. requirement of porosity and permeability, but also by classifying the MICP curves into 

meaningful clusters, improves the selection of representative PC curve.  

11- The next generation of the reservoir models which incorporate Pore-Facies based rock types, will 

provide a basis for more accurate static and dynamic models, a narrower range of uncertainty in the models, and 

a better prediction of reservoir performance while avoiding misclassification of rock types and integrating 

dynamic data in to static reservoir models. 
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Figure’s Captions 

Figure 1- The Dorood field is located in the northern part of the Persian Gulf, offshore Iran. Figure 2- 

Stratigraphy of Fahliyan formation in Dorood field. This formation, composed completely of limestone, 

subdivided into 3 members and 13 reservoir layers.  

Figure 3- Mercury Injection Capillary Pressure Curves from three wells. These curves span the whole range of 

water saturation vs. capillary pressure plot. 

Figure 4- Water saturation vs. capillary pressure along with corresponding height above free water level and J 

function (left). Pore Throat Radius vs. Water saturation for calculation of Mean Hydraulic Radius (Middle). Pore 

Throat Radius vs. Normalized Pore Throat Size Distribution for determination of Pore Throat Size Distribution 

(Right). 

Figure 5- cross-plot of various parameters extracted from MICP curves vs. permeability.  

Figure 6- Cross-plot of water saturation vs. capillary pressure for 9 clusters identified based on clustering using 

MRGC. Each cluster shows a certain pattern of increase in capillary pressure with water saturation. MICP curves 

with different shapes are clearly well separated into meaningful clusters. The highlighted curve in each graph is 

the average representative curve for that cluster. 

Figure 7-a- Pore-Facies #1, thin section micrograph of intraclastic rudstone (left). Both porosity and permeability 

are good (13.6% and 762 mD respectively). Equivalent water saturation vs. capillary pressure (middle) and Pore 

throat radius vs. normalized pore throat size distribution function (right). MICP curve clearly shows bimodal 

pore throat size distribution, the first part of the curves (about 40% water saturation) corresponds to pore throat 

size larger than 10 microns with the dominant value of 50 microns and represented by a macro-ports in the photo 

micrograph. Because of the large pore throats, mercury inters into the sample without any difficulty and creates a 

flat MICP curve. The second part of the curve corresponds to pore throat size of 0.3 micron and is associated 

with micro-ports between particles. Corresponding parameters extracted from MICP curve are as follow: 



 41

RQI=2.18, FZI=14.93, MHR=51.3 micron, PTS=30, Swanson=1.62, RG=1259, PGF=-2.116 and Rthreshold=73.4 

micron. High reservoir quality of this facies is a consequence of extremely large pore throat sizes (more than 

1mm). This pore-facies is usually seen in rudstones and some of grainstones. 

Figure 7-b- Pore-Facies #2, thin section micrograph of peloidal grainstone (left).Porosity and permeability of this 

sample is generally good (17.7% and 17 mD respectively. Equivalent water saturation vs. capillary pressure 

(middle) and pore throat radius vs. normalized pore throat size distribution function (right). MICP curve clearly 

shows bimodal pore throat size distribution, the first part of the curves (about 70% water saturation) corresponds 

to pore throat size larger than 1 micron with the dominant value of 5 microns and represented by a macro-ports 

in the photo micrograph. The second part of the curve corresponds to mean pore throat size of 0.7 micron and are 

associated with meso-ports between particles. Corresponding parameters extracted from MICP curve are as 

follow: RQI=0.28, FZI=1.41, MHR=2.5 micron, PTS=2.22, Swanson=0.22, RG=842, PGF=-1.48 and 

Rthreshold=10.5 micron. This pore-facies is mainly seen in grainstones and some packstones. Large pore throat 

sizes (because of dissolution) are responsible for high reservoir quality of this facies. 

Figure 7-c- Pore-Facies #3, thin section micrograph of ooid grainstone (left). Porosity and permeability of this 

sample is moderate (19.1% and 6.1 mD respectively). Equivalent water saturation vs. capillary pressure (middle) 

and pore throat radius vs. normalized pore throat size distribution function (right). MICP curve shows that pore 

throat radius ranges from 10 to 0.01 micron but the predominant pore throat size is 0.5 micron. Corresponding 

parameters extracted from MICP curve are as follow: RQI=0.16, FZI=0.75, MHR=1.28 micron, PTS=0.69, 

Swanson=0.04, RG=1038, PGF=-1.65 and Rthreshold=6.67 micron. This pore-facies is characterized with uniform 

pore throat size distribution and is mainly seen in grainstones and floatstones. Later pressure dissolution has 

reduced quality of this facies compared to facies#2. 

Figure 7-d- Pore-Facies #4, thin section micrograph of dolomitic wackstone (left). Porosity can be considered 

poor due to the scarcity of molds. Permeability is also low due to the isolated nature of the molds. Measured 

permeability is higher than one might expect due to the relative abundance of open, natural fractures (11.3% and 

20 mD respectively). Equivalent water saturation vs. capillary pressure (middle) and Pore throat radius vs. 

normalized pore throat size distribution function (right). Corresponding parameters extracted from MICP curve 

are as follow: RQI=0.39, FZI=3.28, MHR=0.23 micron, PTS=0.31, Swanson=0.02, RG=1660, PGF=-1.24 and 

Rthreshold=0.82 micron. This pore-facies is usually seen in packstones and wackstones. Many pores are filled with 

later cementations. 

Figure 7-e- Pore-Facies #5, thin section micrograph of peloidal grainstone (left). Porosity and permeability of 

this sample is 14% and 0.85 mD respectively. Equivalent water saturation vs. capillary pressure (middle) and 

pore throat radius vs. normalized pore throat size distribution function (right). MICP curve shows that most of 

the pore throats are smaller than 1 micron which corresponds to the meso-ports of grain and cement dissolution. 

Corresponding parameters extracted from MICP curve are as follow: RQI=0.07, FZI=0.45, MHR=0.42 micron, 
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PTS=0.67, Swanson=0.0031, RG=269, PGF=-0.7 and Rthreshold=1.22 micron. This pore-facies is abundant in 

highly cemented grainstones. Permeability of this facies is a consequence of later dissolution of less stable 

bioclasts. 

Figure 7-f- Pore-Facies #6, thin section micrograph of peloidal grainstone (left). Porosity and permeability of 

this sample is generally moderate (18.8% and 2.65 mD respectively), however extensive patches of calcite 

cementation occur in places, filling many interparticle pore spaces. Equivalent water saturation vs. capillary 

pressure (middle) and Pore throat radius vs. normalized pore throat size distribution function (right). MICP curve 

shows a uniform pore throat size distribution characterized by meso-ports in photo micrograph. The dominant 

pore throat radius is 0.4 micron, however this parameter ranges from 2 to 0.01 micron. Corresponding 

parameters extracted from MICP curve are as follow: RQI=0.11, FZI=0.51, MHR=0.42 micron, PTS=0.52, 

Swanson=0.04, RG=921, PGF=-1.13 and Rthreshold=1.83 micron. This pore-facies is usually seen in grainstones. 

Reservoir quality of this facies has been degraded due to cementation of many of pore throats which created one 

way pass for fluid flow so in spite of having good porosity; its permeability is less than expectation. 

Figure 7-g- Pore-Facies #7, thin section micrograph of skeletal wackstone (left). Visual porosity is poor, 

although limited micro porosity may exist as secondary chalky porosity within the matrix (9% and 0.14 mD 

respectively). Equivalent water saturation vs. capillary pressure (middle) and Pore throat radius vs. normalized 

pore throat size distribution function (right). MICP curve clearly shows mono-modal pore throat size distribution 

with dominant value of 0.2 micron. Corresponding parameters extracted from MICP curve are as follow: 

RQI=0.04, FZI=0.35, MHR=0.24 micron, PTS=0.26, Swanson=0.0009, RG=630, PGF=-0.74 and Rthreshold=0.52 

micron. This pore-facies is abundant in wackstones and packstone/wackstones and generally the pore throat sizes 

are smaller than 1 micron. 

Figure 7-h- Pore-Facies #8, thin section micrograph of lime wackstone (left). Porosity and permeability of this 

sample is 7% and 0.04 mD respectively. Equivalent water saturation vs. capillary pressure (middle) and Pore 

throat radius vs. normalized pore throat size distribution function (right). Corresponding parameters extracted 

from MICP curve are as follow: RQI=0.02, FZI=0.32, MHR=0.44 micron, PTS=0.17, Swanson=0.0005, 

RG=960, PGF=-0.91 and Rthreshold=0.24 micron. This pore-facies is abundant in wackstones. 

Figure 7-i- Pore-Facies #9, thin section micrograph of mudstone (left). Porosity and permeability of this sample 

is low (4% and 0.11 mD respectively). Equivalent water saturation vs. capillary pressure (middle) and Pore 

throat radius vs. normalized pore throat size distribution function (right). Corresponding parameters extracted 

from MICP curve are as follow: RQI=0.05, FZI=1.53, MHR=0.82 micron, PTS=0.07, Swanson=0.0001, 

RG=2190, PGF=-0.98 and Rthreshold=0.09 micron. This pore facies is usually seen in mudstones. This facies has 

the lowest reservoir quality. 
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Figure 8- Average PC curve (left) and J-Function (right) for different Pore-Facies. This J-Curve is a master curve 

that can be used to represent that reservoir and in the absence of other data can be used for other reservoirs of 

similar rock type.  

Figure 9- Cross-plot of Density, Sonic, Gamma Ray and Neutron Porosity. Assuming the number of clusters to 

be 9 and using MRGC, clusters are well separated. Different colors in these cross-plots are representative of 

different Electro-Facies. 

Figure 10- Capillary pressure vs. water saturation for different Litho-Facies. Samples range in texture from 

mudstone to Boundstone. MICP curves with different shape and signature have wrongly been categorized into a 

simple Litho-Facies. 

Figure 11- Capillary pressure vs. water saturation for different Electro-Facies. MICP curves with different shape 

and signature have been categorized into a simple Electro-Facies. 

Figure 12- Box plot of permeability within Pore-Facies (left), Electro-Facies (middle) and Litho-Facies (right). 

The squares indicate the mean and the straight lines show the standard deviation of permeability for each facies.  

Figure 13- The sensitivity of Pore-Facies, Electro-Facies and Litho-Facies to permeability variations. The first 

track is GR, second and third tracks display formation and reservoir zonation respectively. Tracks 4-6 are Pore-

Facies, Electro-Facies and Litho-Facies respectively. The red blocked curves in these three tracks are measured 

permeability. Any real variation in permeability is reflected in Pore-Facies; however this is not the case for the 

Electro and Litho-Facies.  
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Table 1- A total of 14 parameters selected for cluster analysis and their corresponding mean value for each cluster. 

Cluster Weight SB/PC PTS Swanson MHR PGF RG R5 R16 R25 R35 R50 R75 R84 R95 

1 25 0.03423 10.915 0.8035 17.5 -1.670 453 47.258 24.286 16.178 13.081 7.908 1.506 0.551 0.089 

2 22 0.02990 2.440 0.1853 3.62 -1.185 390 9.467 5.861 3.549 2.312 1.131 0.492 0.325 0.108 

3 37 0.00144 0.574 0.0452 0.37 -0.760 355 1.049 0.823 0.737 0.684 0.596 0.394 0.302 0.114 

4 73 0.00204 0.407 0.0280 0.35 -0.897 652 1.012 0.658 0.544 0.469 0.388 0.247 0.175 0.058 

5 33 0.00065 0.293 0.0179 0.2 -0.749 672 0.573 0.432 0.389 0.353 0.309 0.203 0.143 0.051 

6 13 0.00073 0.262 0.0133 0.28 -0.941 1046 0.736 0.452 0.371 0.306 0.237 0.145 0.096 0.031 

7 14 0.00684 0.713 0.0375 1.93 -1.396 1021 4.350 1.531 0.967 0.640 0.442 0.245 0.166 0.050 

8 8 0.00107 0.298 0.0181 0.24 -1.205 1652 0.738 0.475 0.420 0.363 0.299 0.183 0.121 0.028 

9 6 0.00036 0.138 0.0029 0.32 -0.858 1876 0.617 0.302 0.195 0.128 0.082 0.043 0.032 0.020 
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Table 2- Petrophysical properties and main parameters extracted from MICP curves for each pore-facies. 

Pore-Facies Weight K PHI RQI FZI m SB/PC PTS Swanson MHR PGF RG Re Rt 

1 25 193.323 0.198 1.050 4.580 2.148 0.03423 10.915 0.8035 17.500 -1.670 453 101.168 101.168 

2 22 6.533 0.182 0.200 0.876 2.033 0.02990 2.440 0.1853 3.620 -1.185 390 17.891 13.089 

3 14 1.229 0.129 0.101 0.726 1.830 0.00684 0.713 0.0375 1.930 -1.396 1021 10.798 4.397 

4 8 0.965 0.128 0.113 0.844 − 0.00107 0.298 0.0181 0.240 -1.205 1652 1.216 0.699 

5 37 0.673 0.148 0.064 0.372 1.883 0.00144 0.574 0.0452 0.370 -0.760 355 2.018 1.022 

6 73 0.492 0.141 0.058 0.368 1.763 0.00204 0.407 0.0280 0.350 -0.897 652 2.096 0.957 

7 33 0.155 0.113 0.036 0.305 1.766 0.00065 0.293 0.0179 0.200 -0.749 672 1.088 0.523 

8 13 0.095 0.102 0.031 0.279 − 0.00073 0.262 0.0133 0.280 -0.941 1046 1.835 0.791 

9 6 0.081 0.055 0.042 0.958 1.770 0.00036 0.138 0.0029 0.320 -0.858 1876 1.842 0.540 

 

 
 
 
 
 
 
 

 

 


