28 research outputs found
A quick and selective rhodamine based “smart probe” for “signal-on” optical detection of Cu<sup>2+</sup> and Al<sup>3+</sup> in water, cell imaging, computational studies and solid state analysis
A novel rhodamine hydrazone 1 has been synthesized by the condensation of rhodamine B hydrazide with allylsalicylaldehyde and has been fully characterized using various physicochemical techniques including single crystal XRD. Probe 1 can detect Cu2+ and Al3+ ions in aqueous media and displays a turn-on response in absorbance with a high degree of selectivity amongst other common interfering analytes. Al3+ ions lead to fluorescence enhancementby the opening of the spirolactum ring resulting in chelation enhanced fluorescence. DFT and TDDFT calculations support the experimental results. The 1-Al3+ ensemble acts as secondary sensor for pyrophosphate anion due to metal ion induced decomplexation resulting in a low detection limit. Probe 1 can be utilized for bio imaging and displays morphological transformations from crystalline to amorphous state with associated color changes due to mechanical switching. In the solid state, probe 1 displays distinct color changes with emission at different wavelengths in particular Al3+ and Hg2+result in a red shift of the CIE-diagram. While the band gap of probe 1can be tuned from 2.08 eV to 1.60 eV.Probe 1 meets many real-world-challenges in that it is prepared using simple synthetic methods, produces fast and distinct response towards multiple-ions, observed by the “naked eye” in solution and on a TLC plate, and can be exploited for binary data storage
Classification of Clinical Isolates of Klebsiella pneumoniae Based on Their in vitro Biofilm Forming Capabilities and Elucidation of the Biofilm Matrix Chemistry With Special Reference to the Protein Content
Klebsiella pneumoniae is a human pathogen, capable of forming biofilms on abiotic and biotic surfaces. The limitations of the therapeutic options against Klebsiella pneumoniae is actually due to its innate capabilities to form biofilm and harboring determinants of multidrug resistance. We utilized a newer approach for classification of biofilm producing Klebsiella pneumoniae isolates and subsequently we evaluated the chemistry of its slime, more accurately its biofilm. We extracted and determined the amount of polysaccharides and proteins from representative bacterial biofilms. The spatial distribution of sugars and proteins were then investigated in the biofilm matrix using confocal laser scanning microscopy (CLSM). Thereafter, the extracted matrix components were subjected to sophisticated analysis incorporating Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, one-dimensional gel-based electrophoresis (SDS-PAGE), high performance liquid chromatography (HPLC), and MALDI MS/MS analysis. Besides, the quantification of its total proteins, total sugars, uronates, total acetyl content was also done. Results suggest sugars are not the only/major constituent of its biofilms. The proteins were harvested and subjected to SDS-PAGE which revealed various common and unique protein bands. The common band was excised and analyzed by HPLC. MALDI MS/MS results of this common protein band indicated the presence of different proteins within the biofilm. The 55 different proteins were identified including both cytosolic and membrane proteins. About 22 proteins were related to protein synthesis and processing while 15 proteins were identified related to virulence. Similarly, proteins related to energy and metabolism were 8 and those related to capsule and cell wall synthesis were 4. These results will improve our understanding of Klebsiella biofilm composition and will further help us design better strategies for controlling its biofilm such as techniques focused on weakening/targeting certain portions of the slime which is the most common building block of the biofilm matrix
Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study
Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
This online publication has been
corrected. The corrected version
first appeared at thelancet.com
on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Endodermal sinus tumor of vagina in infants
Endodermal sinus tumor (or Yolk Sac tumor) of the vagina is a rare malignant germ-cell tumor which is seen exclusively in children younger than 3 years of age. We report two cases of endodermal sinus tumor of the vagina. In both cases no radiological investigation was done and serum alpha-fetoprotein was elevated. The histopathological examination of both the tumor masses revealed vaginal endodermal sinus tumor. Periodic-acid-Schiff stain with diastase showed diastase resistant hyaline globules. These findings confirmed the diagnosis of endodermal sinus tumor in both cases. Vaginal endodermal sinus tumor is both locally aggressive and capable of metastasis. The serum alpha-fetoprotein level is a useful marker for diagnosis and monitoring the recurrence of vaginal endodermal sinus tumor in infants. Early detection and therapy is important because of its aggressive nature and good response to chemotherapy
Computational Analysis Reveals Monomethylated Triazolopyrimidine as a Novel Inhibitor of SARS-CoV-2 RNA-Dependent RNA Polymerase (RdRp)
The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipi-ravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2
Biofortification of sweet corn hybrids for provitamin-A, lysine and tryptophan using molecular breeding
Not AvailableTraditional sweet corn is poor in provitamin-A, lysine and tryptophan, deficiency of which causes serious health problems. Here, parental lines of two shrunken2 (sh2) -based sweet corn hybrids viz., ASKH-1 and ASKH-2 were targeted for introgression of crtRB1 and opaque2 (o2) genes through marker-assisted backcross breeding. Gene-based markers; umc1066 (SSR) and 3?TE-InDel were utilized for foreground selection of o2 and crtRB1, respectively in BC1F1, BC2F1 and BC2F2 generations. Background selection employing 102?113 polymorphic SSRs led to >90% recovery of recurrent parent genome. Reconstituted hybrids recorded high mean provitamin-A (18.98 ?g/g) with a maximum of 7.7-fold increase over original hybrids (3.12 ?g/g). High mean lysine (0.39%) and tryptophan (0.10%) with an average enhancement of 1.71- and 1.79-fold, respectively was recorded among reconstituted hybrids over original versions (lysine: 0.23%, tryptophan: 0.06%). Improved hybrids exhibited high phenotypic resemblance with their original hybrids. The average cob yield (11.82 t/ha) and brix (17.66%) of improved hybrids was at par with their original versions (cob yield: 11.27 t/ha, brix: 17.04%). These biofortified sweet corn hybrids rich in provitamin-A, lysine and tryptophan hold immense significance as multinutrient-rich balanced food. This is the first report to stack sh2, crtRB1 and o2 genes to improve nutritional quality in sweet corn
Fabrication of Graphene Nanoplatelet-Incorporated Porous Hydroxyapatite Composites: Improved Mechanical and in Vivo Imaging Performances for Emerging Biomedical Applications
Three-dimensional nanocomposites exhibit unexpected mechanical and biological
properties that are produced from two-dimensional graphene nanoplatelets
and oxide materials. In the present study, various composites of microwave-synthesized
nanohydroxyapatite (nHAp) and graphene nanoparticles (GNPs), (100
– x)HAp–xGNPs (x = 0, 0.1, 0.2, 0.3, and 0.5 wt %), were successfully synthesized
using a scalable bottom-up approach, that is, a solid-state reaction
method. The structural, morphological and mechanical properties were
studied using various characterization techniques such as X-ray diffraction
(XRD), scanning electron microscopy (SEM), transmission electron microscopy
(TEM), and universal testing machine (UTM). XRD studies revealed that
the prepared composites have high-order crystallinity. Addition of
GNPs into nHAp significantly improved the mechanical properties. Three-dimensional
nanocomposite 99.5HAp–0.5GNPs exhibited exceptionally high
mechanical properties, for example, a fracture toughness of ∼116
MJ/m3, Young’s modulus of ∼98 GPa, and compressive
strength of 96.04 MPa, which were noticed to be much greater than
in the pure nHAp. The MTT assay and cell imaging behaviors were carried
out on the gut tissues of Drosophila third instars
larvae and on primary rat osteoblast cells for the sample 99.5HAp–0.5GNPs
that have achieved the highest mechanical properties. The treatment
with lower concentrations of 10 μg/mL on the gut tissues of Drosophila and 1 and 5 μg/mL of this composite sample
showed favorable cell viability. Therefore, owing to the excellent
porous nature, interconnected surface morphology, and mechanical and
biological properties, the prepared composite sample 99.5HAp–0.5GNPs
stood as a promising biomaterial for bone implant applications
Access to Indole- And Pyrrole-Fused Diketopiperazines via Tandem Ugi-4CR/Intramolecular Cyclization and Its Regioselective Ring-Opening by Intermolecular Transamidation
An efficient approach for the synthesis of indole- and
pyrrole-fused
diketopiperazines has been developed. This protocol involves the Ugi
four-component reaction (U-4CR) followed by an intramolecular cyclization
of the Ugi products at room temperature to afford the desired products
in good to excellent yields. In addition, it is interesting to report
the subsequent regioselective ring-opening of diketopiperazine unit
occurring via an intermolecular transamidation reaction under mild
condition, resulting in the formation of highly functionalized indole-2-carboxamides
and pyrrole-2-carboxamides