47 research outputs found

    Comparison of Met Office regional model soil moisture with COSMOS‐UK field‐scale in situ observations

    Get PDF
    The UK Met Office state-of-the-art, deterministic, convection-permitting, coupled land-atmosphere, regional weather forecasting system, known as the UKV or UK Variable resolution model (Tang et al. Meteorological Applications, 2013; 20:417–426), has been operational since 2015. Science updates are regularly made to the UKV land surface data assimilation scheme when those updates improve predictions of screen temperature and humidity, since these quantities have a direct impact on atmospheric states and weather forecasts. Less attention has been paid to whether UKV soil moisture analyses are close to independent, in-situ soil moisture observations, partly because it is difficult to make meaningful comparisons between 1.5 km2 gridded model outputs and traditional point sensor measurements. Soil moisture is recognized to be important when hydrological forecasts for runoff and rivers are required. This is because soil moisture controls the extent to which rainfall can infiltrate the soil, and the amount of surface runoff affects the timing of peak river flows (Ward & Robinson, Principles of Hydrology. McGraw-Hill Publishing Company; 2000; Singh et al. Water Resources Research, 2021, 57, e2020WR028827). Gómez et al. (Remote Sensing, 2020; 12:3691) report benefits to river flow forecasts when using soil moisture data assimilation in the UKV system instead of a daily downscaled product from the Met Office global model. The Met Office measures soil temperature and soil moisture at Cardington (Osborne & Weedon, Journal of Hydrometeorology, 2021, 22:279–295); there is no other UK Met Office site at which soil moisture is measured. In this study, we use field-scale (~200 m radius) soil moisture measurements from the UK Centre for Ecology and Hydrology's (UKCEH's) COSMOS-UK network to provide independent verification and analysis of UKV soil moisture during summer 2018, an unusually dry period in the United Kingdom. We find that the match to COSMOS-UK soil moisture observations is generally good, and that changes made to the land data assimilation approach during a recent operational upgrade had a generally beneficial impact on UKV soil moisture analyses under very dry conditions

    Toward condition monitoring of damper windings in synchronous motors via EMD analysis

    Full text link
    (c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Failures in damper windings of synchronous machines operating in real facilities have been recently reported by several authors and companies. These windings are crucial elements of synchronous motors and generators, playing an important role in the asynchronous startup of these machines as well as in their stability during load transients. However, the diagnosis of failures in such elements has barely been studied in the literature. This paper presents a method to diagnose the condition of damper bars in synchronous motors. It is based on the capture of the stator current of the machine during a direct startup and its further analysis in order to track the characteristic transient evolution of a particular fault-related component in the time-frequency map. The fact that the damper only carries significant current during the startup and little or no current, when the machine operates in steady state, makes this transient-based approach specially suited for the detection of such failure. The Hilbert-Huang transform (based on the empirical mode decomposition method) is proposed as a signal-processing tool. Simulation and experimental results on laboratory synchronous machines prove the validity of the approach for condition monitoring of such windings. © 2012 IEEE.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) in the framework of the VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011. (Programa Nacional de proyectos de Investigacion Fundamental, project reference DPI2011-23740). Paper no. TEC-00443-2011.Antonino-Daviu, J.; Riera-Guasp, M.; Pons Llinares, J.; Roger-Folch, J.; Perez, R.; Charlton-Perez, C. (2012). Toward condition monitoring of damper windings in synchronous motors via EMD analysis. IEEE Transactions on Energy Conversion. 27(2):432-439. https://doi.org/10.1109/TEC.2012.2190292S43243927

    Data Assimilation Enhancements to Air Force Weathers Land Information System

    Get PDF
    The United States Air Force (USAF) has a proud and storied tradition of enabling significant advancements in the area of characterizing and modeling land state information. 557th Weather Wing (557 WW; DoDs Executive Agent for Land Information) provides routine geospatial intelligence information to warfighters, planners, and decision makers at all echelons and services of the U.S. military, government and intelligence community. 557 WW and its predecessors have been home to the DoDs only operational regional and global land data analysis systems since January 1958. As a trusted partner since 2005, Air Force Weather (AFW) has relied on the Hydrological Sciences Laboratory at NASA/GSFC to lead the interagency scientific collaboration known as the Land Information System (LIS). LIS is an advanced software framework for high performance land surface modeling and data assimilation of geospatial intelligence (GEOINT) information

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
    corecore