67 research outputs found

    Classical BSE prions emerge from asymptomatic pigs challenged with atypical/Nor98 scrapie

    Get PDF
    Pigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8–9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie

    Transmission of sheep‑bovine spongiform encephalopathy to pigs

    Get PDF
    Experimental transmission of the bovine spongiform encephalopathy (BSE) agent has been successfully reported in pigs inoculated via three simultaneous distinct routes (intracerebral, intraperitoneal and intravenous). Sheep derived BSE (Sh-BSE) is transmitted more efficiently than the original cattle-BSE isolate in a transgenic mouse model expressing porcine prion protein. However, the neuropathology and distribution of Sh-BSE in pigs as natural hosts, and susceptibility to this agent, is unknown. In the present study, seven pigs were intracerebrally inoculated with Sh-BSE prions. One pig was euthanized for analysis in the preclinical disease stage. The remaining six pigs developed biological signs and histopathology revealed severe spongiform changes accompanied by astrogliosis and microgliosis throughout the central nervous system. Intracellular and neuropil-associated pathological prion protein (PrPSc) deposition was consistently observed in different brain sections and corroborated by Western blot. PrPSc was detected by immunohistochemistry and enzyme immunoassay in the following tissues in at least one animal: lymphoid tissues, peripheral nerves, gastrointestinal tract, skeletal muscle, adrenal gland and pancreas. PrPSc deposition was revealed by immunohistochemistry alone in the retina, optic nerve and kidney. These results demonstrate the efficient transmission of Sh-BSE in pigs and show for the first time that in this species propagation of bovine PrPSc in a wide range of peripheral tissues is possible. These results provide important insight into the distribution and detection of prions in non-ruminant animals

    Transmission of sheep-bovine spongiform encephalopathy in pigs

    Get PDF
    The transmissible spongiform encephalopathies (TSE) don´t occur in swine in natural conditions. However, the bovine spongiform encephalopathy (BSE) agent, inoculated by 3 simultaneous routes in pigs, is able to reproduce a neurological disease in these animals. On the other hand, the BSE agent after passage in sheep under experimental conditions (sheep-BSE) exhibits altered pathobiologic properties. This new agent is able to cross the cattle-pig transmission barrier more efficiently than BSE..

    An amino acid substitution found in animals with low susceptibility to prion diseases confers a protective dominant-negative effect in prion-infected transgenic mice

    Get PDF
    While prion diseases have been described in numerous species, some, including those of the Canidae family, appear to show resistance or reduced susceptibility. A better understanding of the factors underlying prion susceptibility is crucial for the development of effective treatment and control measures. We recently demonstrated resistance to prion infection in mice overexpressing a mutated prion protein (PrP) carrying a specific amino acid substitution characteristic of canids. Here, we show that coexpression of this mutated PrP and wild-type mouse PrP in transgenic mice inoculated with different mouse-adapted prion strains (22 L, ME7, RML, and 301C) significantly increases survival times (by 45 to 113%). These data indicate that this amino acid substitution confers a dominant-negative effect on PrP, attenuating the conversion of PrPC to PrPSc and delaying disease onset without altering the neuropathological properties of the prion strains. Taken together, these findings have important implications for the development of new treatment approaches for prion diseases based on dominant-negative proteins

    Epigenome-Wide Association Studies of the Fractional Exhaled Nitric Oxide and Bronchodilator Drug Response in Moderate-to-Severe Pediatric Asthma

    Get PDF
    Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    The brightening of Saturn's F ring

    No full text
    Image photometry reveals that the F ring is approximately twice as bright during the Cassini tour as it was during the Voyager flybys of 1980 and 1981. It is also three times as wide and has a higher integrated optical depth. We have performed photometric measurements of more than 4800 images of Saturn's F ring taken over a 5-year period with Cassini's Narrow Angle Camera. We show that the ring is not optically thin in many observing geometries and apply a photometric model based on single-scattering in the presence of shadowing and obscuration, deriving a mean effective optical depth tau approximate to 0.033. Stellar occultation data from Voyager PPS and Cassini VIMS validate both the optical depth and the width measurements. In contrast to this decades-scale change, the baseline properties of the F ring have not changed significantly from 2004 to 2009. However, we have investigated one major, bright feature that appeared in the ring in late 2006. This transient feature increased the ring's overall mean brightness by 84% and decayed with a half-life of 91 days. (c) 2012 Elsevier B.V. All rights reserved
    corecore