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Abstract: Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response
(BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although
DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR
and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood
associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children
with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has
been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity.
Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs)
and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1
and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive
results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples
(coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015,
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p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified
12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment
in allergic and inflammatory processes, smoking, and aging was observed. We reported novel
associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes.

Keywords: epigenetic; biomarker; methylation; asthma; FeNO; BDR; precision medicine

1. Introduction

Asthma is a heterogeneous respiratory disease that affects more than 330 million
people worldwide and is the most prevalent chronic disease in children. Moreover, asthma
is associated with one in every 250 deaths worldwide [1]. Characterized by chronic airway
inflammation and variable expiratory airflow limitation, asthma is defined by its symptoms,
including wheezing, shortness of breath, chest tightness, and cough, which may vary
over time and in intensity. Anti-inflammatory and bronchodilator drugs are the main
therapy to control asthma symptoms, improve lung function, and reduce the risk of severe
exacerbations [2]. However, less than 5% of pediatric asthma patients have severe asthma,
defined as uncontrolled asthma that often does not respond to the currently available
medications despite adherence to maximal optimized high doses [3]. Severe asthma
patients have the lowest quality of life and the highest risk for morbidity and mortality,
and their treatment consumes the majority of healthcare resources due to asthma [3].

The fractional exhaled nitric oxide (FeNO) and the bronchodilator drug response
(BDR) are two of the main clinical biomarkers that can be objectively measured for asthma
diagnosis and for assessing treatment response. FeNO is the only available non-invasive
biomarker for type 2 airway inflammation in asthma. It can be quantified in exhaled air of
children and adults through portable and non-invasive devices. FeNO levels in exhaled
air have been related to chronic inflammatory diseases, Th2-mediated immune responses,
and airway eosinophilia [2]. BDR measures changes in lung function after administration
of short-acting β2-agonists [4], the main rapid-onset airway bronchodilators. BDR is also
associated with the severity and instability of asthma and is also frequently used for asthma
phenotyping. FeNO and BDR are conditioned by genetic and environmental factors [5,6].

Precision medicine aims to improve the prevention and treatment of diseases based on
features inherent to each patient [7]. The genetic background greatly contributes to asthma,
estimating the heritability of asthma susceptibility over 55–90% and 70% to treatment
response [7]. However, currently reported genetic variants only partially explain this
heritability. Asthma is a multifactorial disease, and susceptibility and treatment response
are influenced by genetic variation and environmental factors [7]. DNA methylation
(DNAm), an epigenetic mechanism that reflects the interaction between both genetic
and environmental factors, could explain part of the heritability of asthma treatment
response [8]. Epigenome-wide association studies (EWAS) have identified promising CpG
sites and differentially methylated regions (DMRs) involved in asthma [9,10]. Despite being
useful clinical biomarkers in the management of asthma, the relationship of DNAm with
FeNO and BDR has been scarcely investigated. Cardenas et al. [9] profiled DNAm in nasal
cells in 547 children from different populations and identified a large set of CpGs and DMRs
associated with multiple asthma-related phenotypes, including FeNO (8,372 CpGs and 191
DMRs with FDR < 0.05) and BDR (130 CpGs with an FDR < 0.05). They reported that FeNO-
associated epigenetic markers were enriched in intracellular membrane trafficking, T cell
activation, oxidative stress, mucin production, neutrophil degranulation, and interleukin
pathways. Multiple DMRs were located in asthma-associated genes, including TNIP-
1, IL-13, and CHI3L1. For the BDR trait, they did not report any significant DMRs and
observed that the associated epigenetic markers did not overlap with any other asthma-
related phenotype. However, this study only included 12% of individuals with current
asthma. On the other hand, FeNO-related genes, including multiple nitric oxide synthase
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(NOS) and arginase (ARG) isoforms, have been evaluated in candidate-gene epigenetic
studies, but controversial results of the effect of epigenetic markers in these genes and
FeNO have been reported [11,12].

The association of FeNO and BDR with both environmental and genetic factors has
been reported, but its relationship with the epigenome in asthma patients remains barely
investigated. Thus, we hypothesize that DNAm from whole blood is a biomarker associated
with BDR and FeNO that captures the influence of environmental and genetic factors on
these clinical biomarkers. Therefore, this study aimed to identify DNAm markers in whole
blood associated with BDR or FeNO in pediatric asthma, assess whether they are shared
with nasal epithelium cells, and analyze their enrichment in previous associations and/or
biological processes.

2. Materials and Methods
2.1. Study Population

This study was conducted in children with moderate-to-severe asthma from the
Systems Pharmacology Approach to Uncontrolled Pediatric Asthma (SysPharmPediA) con-
sortium (Clinicaltrials.gov ID: NCT04865575) [13]. This study was conducted following the
Declaration of Helsinki and approved by the ethics committees of participating institutions:
University Regensburg, Germany (18-1034-101); Clinical Research Ethics Committee of
Basque Country, Spain [PI2015075 (SO)]; Medical Ethics Committee of the University Medi-
cal Center Utrecht (UMC Utrecht), Utrecht, The Netherlands (NL55788.041.15); National
Medical Ethics Committee, Slovenia (0120-569/2017/4); and Ethical Regional Review Board
in Stockholm, Sweden (Dnr 2010/1336-31/3 and 2019-00546). All parents and participants
provided signed written consent and agreed to participate in the study. The study design
and characteristics of the enrolled patients have already been described elsewhere [13].
Briefly, patients were enrolled in four European countries (Spain, The Netherlands, Slove-
nia, and Germany) according to the following inclusion criteria: (1) aged between 6 and 17
years old, (2) physician’s diagnosis of asthma, and (3) moderate-to-severe patients with
asthma treated with medication step ≥ 3 according to the Global Initiative for Asthma
(GINA) guidelines [2]. In the current study, only individuals with available data on BDR
and/or FeNO were included.

Clinical and demographic variables of interest were recorded using standardized
questionnaires. Asthma control was assessed based on (childhood) Asthma Control Test
(ACT/cACT) and the development of asthma exacerbations. Uncontrolled asthma was
defined as having an ACT/cACT score ≤ 19 or ≥ 1 exacerbation requiring oral corticos-
teroids or severe exacerbation requiring hospitalization or emergency room visits in the
past year. Controlled asthma was defined as asthma patients with an ACT/cACT score > 19
and no severe exacerbations in the past year. Body mass index (BMI) was estimated as
BMI = weight (kg)/height (m2). According to the World Health Organization (WHO)
recommendations, we expressed BMI as z-scores [14].

2.2. Measurement of FeNO and BDR

Spirometry tests pre- and post-administration of bronchodilator and FeNO assess-
ment were performed according to the European Respiratory Society/American Thoracic
Society (ERS/ATS) guidelines [15,16], as previously described [13]. BDR was calculated
based on the forced expiratory volume in the first second (FEV1), expressed in liters, as
BDR = postFEV1−preFEV1

preFEV1 × 100. FeNO values were reported as parts per billion (ppb).

2.3. Genome-Wide Methylation Assessment and Quality Control

Blood samples were collected in K-EDTA vacutainer tubes for subsequent downstream
applications, including genotyping and methylation profiling. Genomic DNA was isolated
using the FlexiGene DNA Kit (Qiagen) according to the manufacturer’s instructions. After
concentration measurements and quality control (QC), the samples were equilibrated to
10 ng/µL, and a total of 500 ng DNA was utilized for bisulfite conversion. Next, methylation
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levels of 865,918 CpG sites across the whole genome were assessed using the Infinium
Illumina MethylationEPIC BeadChip array (Illumina Inc., San Diego, CA, USA). Raw data
QC was conducted using the ENmix package (1.28.8) [17] in R (4.1.2) [18]. First, we removed
low-quality samples and probes. Methylation data points were defined as low-quality data
if their signal did not differ from negative control (detection p-value > 1 × 10−6) and/or
they were measured by < 3 beads. Based on that, low-quality CpG probes were defined as
those having ≥ 5% of bad-quality data points across samples. Low-quality samples were
defined as (1) the presence of ≥ 5% of bad quality data points across CpGs, (2) having
total bisulfite intensity less than three standard deviations than bisulfite controls, and/or
(3) outliers of bisulfite intensity or beta value distribution.

We used the out-of-band (oob) method for background noise correction. Bisulfite inten-
sities were normalized by quantile normalization to reduce variability among arrays. The
EPIC array uses two different dyes and types of probes; (i) Regression on Correlated Probes
(RCP) and (ii) the Regression on Logarithm of Internal Control (RELIC) methods [19,20]
to correct dye- and probe-type biases. Methylation intensities were used to estimate beta
values. Furthermore, outlier methylation data points for each CpG, defined as values be-
low/above three times the interquartile range (IQR) from the first/third quantiles, were set
as missing values. CpGs and samples with a missing rate of ≥5% and ≥10%, respectively,
were removed. The remaining missing values were imputed (k-nearest neighbor method).
Moreover, we estimated the predicted sex based on methylation data and discarded one
sample with sex discordance between the reported and predicted sex.

We removed first- and second-degree related individuals previously identified based
on genotype data obtained with the Global Screening Array (GSA, Illumina Inc.). Since we
included both males and females, we removed probes within sex chromosomes. Potential
cross-sample contamination was assessed based on the distribution of beta-values of the
control genotype probes included in the EPIC array. We used the ewastools R package [21]
to identify potential cross-sample contaminated individuals and inspected the beta value
distribution plots. Potential problematic probes that may capture other artifacts different
than methylation were also filtered out. These include probes: (1) with a multimodal
distribution of beta values, (2) cross-reactive or non-specific, which bind non-specifically
to the target region of interest [22], and (3) potentially polymorphic probes defined as
those containing a single nucleotide polymorphism (SNP) with a minor allele frequency
(MAF) > 1% based on the Illumina v1.0 B4 manifest file at the CpG site or a single base
extension. Finally, beta values were transformed into M-values for improved statistical
properties [23].

2.4. Estimation of Cell-Type Heterogeneity and Potential Confounders

Cell-type heterogeneity is the major confounder in EWAS performed in primary tissues.
In whole blood, DNAm captures the epigenetic states of a mixture of cell types. These
distinct methylation profiles may lead to false discoveries when looking for their correlation
with the phenotype of interest [24]. Therefore, cell-type heterogeneity in whole blood was
captured using the Reference-Free Adjustment for Cell-Type composition (ReFACTor) [24]
algorithm in GLINT 1.0.4, adjusting for sex, age, and the first six genotype principal
components (PCs). This method estimates a set of PCs correlated with cell-type composition
and could be included as covariates in subsequent analyses to correct this major confounder.
A principal component regression analysis was used to test for association between multiple
potential confounding variables and global DNAm.

2.5. Epigenome-Wide Association Study

We conducted an EWAS to identify single CpG sites across the genome associated with
FeNO or BDR. The association between the methylation M-values and FeNO/BDR was
tested through linear regression models using the limma v3.48.3 R package [25], adjusting for
age, sex, ancestry (six genotype PCs), and the first six ReFACTor components. A false discov-
ery rate (FDR) of 10% was used to correct for multiple comparisons. The p-value < 9 × 10−8
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threshold was used to declare genome-wide significant association, as recommended for
the EPIC array [26]. Genome inflation factor (λ) and quantile–quantile plots (Q-Q plots) of
regression p-values were examined to inspect genomic inflation. Probes were annotated
to the nearest gene based on the Illumina manifest file v1.0 B4 [27] and GREAT v4.0.4 [28].
Furthermore, we evaluated the robustness of the results by conducting sensitivity analy-
ses adjusting for ICS dosage and recruiting center and stratified analysis by sex, age, and
ethnicity. Potentially problematic probes were filtered out for subsequent analyses.

2.6. Cross-Tissue Validation

We attempted to evaluate the effect of the CpGs identified in whole blood samples
in 62 nasal samples. Clinical data are summarized in Supplementary Table S1. Nasal
epithelial cells were collected using sterile nasal swabs (Paul Böttger OHG, Bodenmais,
Germany) and stored at −80 ◦C until processing. Genomic DNA was isolated using the
MasterPure Complete DNA & RNA Purification Kit (Lucigen, Teddington, UK) according
to the manufacturer’s instructions. Genome-wide DNAm profiling was carried out using
the Illumina Infinium MethylationEPIC array. QC of DNAm data, cell-tissue heterogeneity
assessment, and association analyses were conducted following the same procedures
described for the blood samples.

2.7. Differentially Methylated Regions

A DMR analysis was conducted to identify genomic regions of several CpG sites in
which the global DNAm might be associated with our outcomes of interest. Two inde-
pendent software, comb-p [29] and DMRcate [30], were used to identify DMRs associated
with BDR and FeNO. Regions were identified based on CpGs with p-value < 0.05 (comb-p)
or FDR ≤ 0.2 (DMRcate), and those CpGs located within 750 bp (comb-p) or 1000 bp
(DMRcate) were combined into the same region. Only DMRs significant after correcting
for multiple testing overlapping in both methods (adjusted p-value < 0.05) were retained.
Comb-p was used to identify DMRs associated with BDR and FeNO in nasal samples using
the same parameters as in the discovery phase.

2.8. Enrichment Analyses

Enrichment analysis was next performed to identify whether a set of CpGs or genes
were more likely to be related to biological pathways, gene ontology terms, or different
traits than by chance. The top 100 probes from the EWAS of FeNO and BDR were included
in CpG-set enrichment analyses to identify an enrichment of CpGs previously associated
with any traits through EWAS. These analyses were carried out using the EWAS Toolkit [31].
Furthermore, the genes to which these CpGs were annotated were included in gene-set
enrichment analyses to identify enrichment in biological pathways and gene ontologies
using Enrichr [32].

3. Results
3.1. Quality Control of DNAm Data and Assessment of Global DNAm Patterns

After QC, epigenomic data were available for 124 individuals and 773,260 CpGs from
whole blood, and 55 individuals and 636,555 CpGs from nasal epithelia were available for
subsequent analyses. The individuals and CpGs removed or flagged during the QC are sum-
marized in Supplementary Table S2. The principal regression analysis plot showed that age,
sex, ReFACTor principal components (capturing cell-heterogeneity), and ancestry had the most
significant associations with global methylation patterns (Supplementary Figures S1 and S2).
As a result, these variables were considered the most relevant confounders to be included as
covariates in the association analyses. FeNO and BDR also showed significant associations
with global methylation patterns.
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3.2. Study Population

A total of 109 and 121 asthma patients from SysPharmPediA with available FeNO
and BDR and epigenomic data in blood were analyzed. Their main characteristics are
summarized in Table 1. Briefly, for the 121 patients, the median age was 12.0 years old,
and 62% were male. The median FeNO was 16.0 ppb (IQR = 9.0–38.0), and the median
BDR was 4.2% (IQR = 0.6–11.3). Most children were European (79.3%), and 63.6% had
uncontrolled asthma. Regarding lung function, the median predicted percentage values
were 93.6% (IQR = 82.5–103.2) and 99.4% (IQR = 91.2–108.1) for pre-FEV1 and pre-forced
vital capacity (pre-FVC), respectively.

Table 1. Clinical and demographic characteristics of the study population.

Characteristics n EWAS of BDR n EWAS of FeNO

Sex (male) 121 75 (62) 109 67 (61.5)
Age (years) 121 12.0 (9.8−14.0) 109 12.1 (9.8−14.0)

Ancestry 121 109
African 4 (3.3) 2 (1.9)
Asian 2 (1.7) 1 (0.9)

European 96 (79.3) 88 (80.7)
Latin 9 (7.4) 8 (7.3)

Mixed/Other 10 (8.3) 10 (9.2)
Body mass index (z-score) 121 0.5 (−0.3−4.0) 108 0.4 (-0.4−1.3)

Uncontrolled asthma 121 77 (63.6) 109 71 (65.1)
pre-FEV1 (predicted %) 121 93.6 (82.5−103.2) 108 95.3 (82.7−103.2)
pre-FVC (predicted %) 121 99.4 (91.2−108.1) 108 100.3 (91.0−107.6)

BDR (%) 121 4.2 (0.6−11.3) 108 4.2 (0.6−10.5)
FeNO (ppb) 120 16.0 (9.0−38.0) 109 16.0 (9.0−41.0)

SABAs 103 94 (91.3) 92 84 (91.3)
LABAs 103 96 (93.2) 92 87 (94.6)

ICS 103 103 (100) 92 92 (100)
LTRA 103 17 (16.5) 92 15 (16.3)
OCS 103 2 (1.9) 92 1 (1.09)

Biological therapy † 103 9 (8.7) 92 8 (8.7)

Categorical variables are described as counts (percentage), and continuous variables as median (interquartile
range). † Biological therapy: Mepolizumab or Omalizumab intake. Abbreviations: FEV1: Forced Expiratory
Volume in the first second; FVC: forced vital capacity; BDR: Bronchodilator drug response; FeNO: Fractional
exhaled nitric oxide; SABA: Short-Acting Beta-Agonists; LABAs: Long-Acting Beta-Agonists; ICS: Inhaled
corticosteroids; LTRA: Leukotriene Receptor Antagonists; OCS: Oral corticosteroids.

3.3. Epigenome-Wide Association Study

We did not observe genomic inflation both in the EWAS of BDR (λ = 1.04) (Figure 1A)
and FeNO (λ = 1.03) (Figure 1C), indicating an optimal control for cell heterogeneity
and other confounders. A total of three CpGs were significantly associated with BDR
with FDR < 0.1 (Table 2, Figure 1B). The top hit was the CpG cg26203256, located in the
ADD3-AS1 gene, in which DNAm was associated with lower BDR (coefficient = −0.02,
p = 1.85 × 10−7). On the other hand, the CpG cg12835256 located near PLA2G12A was
genome-wide significantly associated with a reduction in FeNO (coefficient = −0.015,
p = 2.53 × 10−9) (Table 2, Figure 1D). The negative coefficients for both associations suggest
that these CpG are more likely to be hypomethylated in patients with higher FeNO or
BDR values. These associations remained robust in all sensitivity analyses considering
ICS dosage, recruiting centers, and ethnicity (Supplementary Table S3). The top-hit CpG
cg12835256 (PLA2G12A) was cross-tissue associated in nasal samples (coefficient = −0.015,
p = 0.045, Supplementary Table S4). This CpG is flagged in Illumina’s manifest file as
a potential polymorphic probe. However, the potentially implicated SNP (rs4557260) is
almost monomorphic in our population (minor allele count = 1).
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Figure 1. (A) Q-Q plot of p-values of the EWAS of BDR. (B) Manhattan plot for the EWAS of BDR.
This figure illustrates the position of each CpG arranged by chromosomal location (X-axis) and the
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(Y-axis). The blue and red lines represent the FDR < 0.1 and genome-wide thresholds, respectively.
(C) Q-Q plot of p-values of the EWAS of FeNO. (D) Manhattan plot for the EWAS of FeNO.

Table 2. Summary results of the epigenome-wide association studies.

CpG Chr Position † Gene
Relative

Position * Coef SE p-Value FDR

Bronchodilator drug response

cg26203256 10 111756055 ADD3-AS1 First intron −0.020 0.004 1.85 × 10−7 0.099
cg14985321 14 20823915 PARP2 Tenth exon −0.010 0.002 3.71 × 10−7 0.099

cg06975120 9 139606856 FAM69B
165 bp

upstream −0.034 0.006 3.86 × 10−7 0.099

Fractional exhaled nitric oxide

cg12835256 4 110651671 PLA2G12A
439 bp

upstream −0.015 0.002 2.53 × 10−9 0.002

cg19644580 21 19166676 C21orf91
Fourth
intron 0.006 0.001 1.29 × 10−7 0.050

† Position based on GRCh37/hg19 build. * Relative position to the transcription start sites of each gene. Abbre-
viations. Chr: chromosome; Coef: Coefficient expressed as log2(fold-change); SE: Standard error; FDR: False
discovery rate.

Given that the age of the patients recruited in the study included puberty onset
(13 years), where asthma prevalence trend switches between males and females [33,34], we
also performed sensitivity analyses stratifying by sex and age. In the sex-stratified analysis,
with the exception of the CpG from C21orf91, the rest of the CpGs were significant and
showed consistent effects in both sexes (Supplementary Table S5). In the age-stratified anal-
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ysis, all CpGs showed consistent effects in both age groups, but the one from FAM69B was
not statistically significant in patients younger than 13 years old (Supplementary Table S5).

3.4. Differentially Methylated Regions

Four DMRs were associated with BDR using two independent software (adjusted
p-value < 0.05) (Table 3). The top-hit was a region of 699 bp located in C5orf63
(FDR = 2.80 × 10−7). The other DMRs were annotated to PPFIBP2, RAMP1, and LY6G5C.
The top hit DMR located in C5orf63 was cross-tissue validated in nasal samples (5: 126409007-
5: 126409455, 9 CpGs, region p-value = 6.30 × 10−7, adjusted p-value = 9.54 × 10−4). In
addition, 12 DMRs were associated with FeNO (adjusted p-value < 0.05) (Table 3). The
top hit was a region of 1,458 bp located in PPP5D1 (FDR = 1.48 × 10−18). The other
DMRs were annotated to EGR3, ODF3L1, HOXA6, HOXA-AS3, HOXA4, AURKC, MOGAT3,
HOXA7, PDZRN4, MAGI2-AS3, and PTGS1. The majority of DMRs showed a negative
coefficient, indicating they are more likely hypomethylated in patients with higher FeNO
or BDR values.

Table 3. Differentially methylated regions associated with BDR and FeNO.

Chr Start † End † Gene Relative Position * N◦ of CpGs Coefficient FDR

Bronchodilator drug response

5 126408755 126409453 C5orf63 Promoter, first exon, and intron 11 −0.024 2.80 × 10−7

11 7597813 7598150 PPFIBP2 Gene body (alternative transcripts) 5 −0.011 9.24 × 10−7

2 238767350 238767779 RAMP1 671 bp upstream 4 −0.022 2.67 × 10−6

6 31650734 31650849 LY6G5C Gene body (alternative transcripts) 3 −0.023 8.96 × 10−6

Fractional exhaled nitric oxide

19 46998382 46999839 PPP5D1 Third intron 16 −0.004 1.48 × 10−18

8 22560921 22561950 EGR3 10,622 bp upstream 7 −0.005 3.15 × 10−17

15 76016128 76016334 ODF3L1 Promoter and first exon 6 −0.003 6.66 × 10−14

7 27186553 27187559 HOXA6 Promoter and gene body 11 0.005 2.01 × 10−13

7 27183273 27184736 HOXA-AS3 First intron 33 0.004 2.53 × 10−13

7 27170240 27170831 HOXA4 Promoter and first exon 10 −0.006 1.00 × 10−10

19 57742111 57742443 AURKC Promoter and first exon 10 −0.008 3.95 × 10−10

7 100844059 100844444 MOGAT3 First exon 7 −0.002 4.21 × 10−10

7 27198188 27198428 HOXA7 1857 bp upstream 3 0.005 1.37 × 10−9

12 41581774 41582136 PDZRN4 Promoter and first exon 6 −0.004 1.37 × 10−9

7 79083996 79084165 MAGI2-AS3 Second intron 7 0.003 2.59 × 10−9

9 125137543 125137593 PTGS1 Second intron 3 0.003 7.61 × 10−9

† Position based on GRCh37/hg19 build. * Relative position to the transcription start sites. Abbreviations. Chr:
Chromosome; BDR: bronchodilator drug response; FeNO: fractional exhaled nitric oxide.

3.5. Enrichment Analyses

Regarding the EWAS of BDR, the gene-set enrichment analysis revealed enrich-
ment in several pathways relevant to asthma, including IL-5 (FDR = 1.1 × 10−2), IL-2
(FDR = 4.2 × 10−2), Fc epsilon Receptor I signaling pathways (FDR = 3.3 × 10−2), and
cellular aging (FDR = 4.2 × 10−2) (Supplementary Table S6). The CpG-set analyses showed
enrichment in several traits, but they were supported only by one CpG (Supplementary
Figure S3). The CpGs associated with FeNO demonstrated enrichment in previous EWAS
associations, including aging (p = 1.33 × 10−82, 44 CpGs), smoking (p = 9.19 × 10−16,
13 CpGs), and puberty (p = 1.30 × 10−11, 6 CpGs) (Figure 2). The gene-set analysis only
revealed the enrichment of genes implicated in the mechanism of action of the peroxisome
proliferator-activated receptors (PPARs) (odds ratio [OR] = 138.18, FDR = 7.38 × 10−3,
effect-causing genes: PPARA and PTGS1).



Biomedicines 2023, 11, 676 9 of 15

Biomedicines 2023, 11, x FOR PEER REVIEW 9 of 16 
 

7 27170240 27170831 HOXA4 Promoter and first exon 10 −0.006 1.00 × 10−10 
19 57742111 57742443 AURKC Promoter and first exon 10 −0.008 3.95 × 10−10 
7 100844059 100844444 MOGAT3 First exon 7 −0.002 4.21 × 10−10 
7 27198188 27198428 HOXA7 1,857 bp upstream 3 0.005 1.37 × 10−9 

12 41581774 41582136 PDZRN4 Promoter and first exon 6 −0.004 1.37 × 10−9 
7 79083996 79084165 MAGI2-AS3 Second intron 7 0.003 2.59 × 10−9 
9 125137543 125137593 PTGS1 Second intron 3 0.003 7.61 × 10−9 

† Position based on GRCh37/hg19 build. * Relative position to the transcription start sites. Abbrevi-
ations. Chr: Chromosome; BDR: bronchodilator drug response; FeNO: fractional exhaled nitric ox-
ide. 

3.5. Enrichment Analyses 
Regarding the EWAS of BDR, the gene-set enrichment analysis revealed enrichment 

in several pathways relevant to asthma, including IL-5 (FDR = 1.1 × 10−2), IL-2 (FDR = 4.2 
× 10−2), Fc epsilon Receptor I signaling pathways (FDR = 3.3 × 10−2), and cellular aging (FDR 
= 4.2 × 10−2) (Supplementary Table S6). The CpG-set analyses showed enrichment in sev-
eral traits, but they were supported only by one CpG (Supplementary Figure S3). The 
CpGs associated with FeNO demonstrated enrichment in previous EWAS associations, 
including aging (p = 1.33 × 10−82, 44 CpGs), smoking (p = 9.19 × 10−16, 13 CpGs), and puberty 
(p = 1.30 × 10−11, 6 CpGs) (Figure 2). The gene-set analysis only revealed the enrichment of 
genes implicated in the mechanism of action of the peroxisome proliferator-activated re-
ceptors (PPARs) (odds ratio [OR] = 138.18, FDR = 7.38 × 10−3, effect-causing genes: PPARA 
and PTGS1). 

 
Figure 2. Summary plot of the trait-enrichment analysis for the top 100 CpGs associated with FeNO. 
p-values are displayed on the X-axis, and traits on the Y-axis. The color scale represents the signifi-
cance of the association. The point size indicates the number of CpGs supporting the enrichment. 

  

Figure 2. Summary plot of the trait-enrichment analysis for the top 100 CpGs associated with FeNO.
p-values are displayed on the X-axis, and traits on the Y-axis. The color scale represents the significance
of the association. The point size indicates the number of CpGs supporting the enrichment.

4. Discussion

This study investigated the role of DNAm in two clinical biomarkers, FeNO and
BDR, in children with moderate-to-severe asthma. We identified one CpG located in the
PLA2G12A gene as genome-wide significantly associated with FeNO and three CpGs
significantly associated with BDR. Furthermore, twelve and four DMRs were related to
FeNO and BDR, respectively. In addition, the top-hit CpG and DMR associated with
FeNO and BDR, respectively, were cross-tissue validated in nasal samples. CpG-set and
gene-set analyses revealed significant enrichment in previous EWAS signals and biological
pathways involved in asthma. Our findings are relevant by providing new perspectives on
the influence of DNAm on asthma biomarkers in pediatric asthma. Although some results
overlap with a previous study (e.g., biological pathways such as interleukin signaling), our
CpGs and differentially methylated sites and also its implications in biological pathways
had not been previously reported by Cardenas et al. [9].

The CpG genome-wide, significantly associated with FeNO in whole blood and cross-
validated in nasal samples (cg12835256), is located at the gene encoding for phospholipase
A2 Group XIIA (PLA2G12A), a member of a group of phospholipases with a key role as reg-
ulators of type-2 inflammation, airway hyperresponsiveness, and eicosanoids production
in asthma [35]. This enzyme, highly expressed in airway cells [36], acts as a high-affinity
ligand for the PLA2R1 receptor, whose expression is elevated in children with asthma
compared to healthy patients [37]. We also reported another CpG associated with FeNO,
annotated to the chromosome 21 open reading frame 91 (C21orf91) gene. In a previous
study, this gene was observed to be co-expressed with the IL-6 receptor (IL-R6), which
has been associated with asthma risk. [38]. The complex IL-6/IL6R triggers a cascade that
activates STAT3 and CEBP transcription factors, both involved in airway inflammation and
asthma [39]. Increased levels of IL-6 have been related to impaired altered lung function
and the use of high-dose ICS [40].

The most significant DMR for FeNO was annotated to PPP5D1, a pseudogene whose
role in asthma is still unclear. Furthermore, we reported a DMR associated with FeNO
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located near EGR3. This gene encodes for a protein member of the early growth factors
(EGR), which regulate the expression of genes related to inflammation and cell growth [41].
In addition, EGR3 was reported to be overexpressed in the lung of asthma patients and
regulates the expression of IL-2, IL-6, and IL-8 [42–44]. The other DMRs associated with
FeNO are located in genes of the HOXA gene family (i.e., HOXA-AS3, HOXA7, and
HOXA4), AURKC, MAGI2-AS3, PDZRN4, and MOGAT3. HOXA-AS3 encodes a long
noncoding RNA identified as a positive regulator of the necrosis factor kappa B (NF-κB)
signaling [45]. NF-κB is a well-known transcription factor that leads to the expression
of multiple pro-inflammatory mediators (e.g., cytokines and chemokines) involved in
asthma [46]. In addition, MOGAT3 encodes a protein that catalyzes the synthesis of
diacylglycerol, a metabolite that attenuates the pathological consequences of inflammatory
processes [47]. Furthermore, DNAm markers in HOXA7 and HOXA4 genes have been
associated with lung development and asthma [48], while DNAm in AURKC has been
associated with lung function in Latino children with asthma [49]. Finally, MAGI2-AS3
encodes a lncRNA previously associated with asthma-related functions and pathways,
such as cytokine production, cell proliferation, and kinase activity [50].

We reported the association of three epigenetic markers with BDR, located in ADD3-
AS1, PARP2, and FAM69B. The ADD3-AS1 gene is located in the antisense strand of ADD3,
whose gene expression patterns correlate with serum immunoglobulin E (IgE) levels in
atopic asthma patients [51]. The PARP2 encodes a protein from PARP enzymes, which play
key roles in asthma pathogenesis by affecting the expression of pro-inflammatory genes
and chemokines [52]. Furthermore, we reported DMRs associated with BDR annotated
to C5orf63 (validated in nasal samples), PPFIBP2, LY6G5C, and RAMP1. The receptor
activity-modifying protein 1 (RAMP1) is a component of the Calcitonin gene-related protein
(CGRP) receptor. Studies questioning the role of CGRP during allergic asthma have
been contradictory, suggesting both protective (e.g., maintenance of vascular tone) and
inflammation-promoting roles [53].

The epigenetic markers identified in this study showed enrichment in traits and bio-
logical processes, including PPARs, interleukins (IL-5 and IL-2), FcERI signaling pathways,
smoking, and aging. PPARs have been established as critical components of type 2 im-
mune response to allergens. The mechanism of action of PPARs is characterized by the
ability to regulate lipid metabolism and inhibit proinflammatory transcription factors (e.g.,
NF-κB), which could make them a therapeutic target for asthma [54]. Patients with severe
asthma have abnormal production of type 2 cytokines, whereas IL-5 is the main mediator of
eosinophilic inflammation [55]. Similarly, alterations in the FcERI pathway are described in
allergic diseases and associated with asthma exacerbations and allergic inflammation [56].
Interestingly, the strongest enrichment signal was related to aging. In the context of asthma,
epigenetic age acceleration has been associated with asthma, allergic phenotypes, IgE,
and FeNO [9,57]. In addition, we identified enrichment in CpGs related to smoking and
second-hand smoke, which are well-known risk factors for asthma, impaired lung function,
and unresponsiveness to corticosteroids [58].

We acknowledge some strengths of this work. Our study on pediatric patients pro-
vides a novel insight into a specific asthma phenotype that has been widely understudied:
moderate-to-severe asthma. Moreover, we have controlled our analyses for known con-
founders in EWAS, such as age, sex, tissue heterogeneity, and ancestry. We also used
microarrays that allow the agnostic genome-wide screening of DNAm changes with a
low technical variation [59]. In addition, the multi-center pan-European nature makes the
results likely generalizable to multiple populations. However, some limitations of this
study must be acknowledged. First, the sample size of our study is modest in comparison
to previous EWAS, not allowing us to detect DNAm changes with small effects. However,
the prevalence of children with moderate to severe asthma is generally low, making this
a unique cohort. Second, focusing on this specific phenotype of moderate-to-severe pe-
diatric asthma could limit the generalizability of the results to other asthma phenotypes.
Third, we have not included an independent population to replicate our findings, but we
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assessed cross-tissue validation in nasal samples. Fourth, although we assessed DNAm
in whole blood and nasal samples, other asthma-relevant tissues remained unexplored.
Fifth, although we adopted the standard approach of adjusting by cell heterogeneity, we
acknowledge that this could have reduced the statistical power to detect DNAm changes
related to eosinophilic or Th2 asthma. Sixth, although we addressed any potential bias in
our results related to age and sex, we have not recorded sex hormone levels or the age of
puberty onset to better classify the patients in sensitive and stratified analyses.

5. Conclusions

In conclusion, we reported novel associations of epigenetic markers in whole blood
associated with FeNO and BDR in children with moderate-to-severe asthma. These markers
were enriched in asthma-related pathways, such as aging, smoking, and inflammatory and
allergic responses. Furthermore, these findings provide new insights into potential epigenetic
biomarkers of asthma that could be used as predictors of prognosis or treatment response.
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