10 research outputs found

    Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors

    Get PDF
    The potential use of human Decidua-derived mesenchymal stem cells (DMSCs) as a platform to carry mesoporous silica nanoparticles in cancer therapy has been investigated. Two types of nanoparticles were evaluated. The nanoparticles showed negligible toxicity to the cells, a fast uptake and a long retention inside them. Nanoparticle location in the cell was studied by colocalization with the lysosomes. Moreover, the in vitro and in vivo migration of DMSCs towards tumors was not modified by the evaluated nanoparticles. Finally, DMSCs transporting doxorubicin-loaded nanoparticles were capable of inducing cancer cell death in vitro

    Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018) : Change management in allergic rhinitis and asthma multimorbidity using mobile technology

    Get PDF
    Allergic Rhinitis and its Impact on Asthma (ARIA) has evolved from a guideline by using the best approach to integrated care pathways using mobile technology in patients with allergic rhinitis (AR) and asthma multimorbidity. The proposed next phase of ARIA is change management, with the aim of providing an active and healthy life to patients with rhinitis and to those with asthma multimorbidity across the lifecycle irrespective of their sex or socioeconomic status to reduce health and social inequities incurred by the disease. ARIA has followed the 8-step model of Kotter to assess and implement the effect of rhinitis on asthma multimorbidity and to propose multimorbid guidelines. A second change management strategy is proposed by ARIA Phase 4 to increase self-medication and shared decision making in rhinitis and asthma multimorbidity. An innovation of ARIA has been the development and validation of information technology evidence-based tools (Mobile Airways Sentinel Network [MASK]) that can inform patient decisions on the basis of a self-care plan proposed by the health care professional.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery

    No full text
    Mesoporous silica nanoparticles have been reported as suitable drug carriers, but their successful delivery to target tissues following systemic administration remains a challenge. In the present work, ultrasound-induced inertial cavitation was evaluated as a mechanism to promote their extravasation in a flow-through tissue-mimicking agarose phantom. Two different ultrasound frequencies, 0.5 or 1.6 MHz, with pressures in the range 0.5–4 MPa were used to drive cavitation activity which was detected in real time. The optimal ultrasound conditions identified were employed to deliver dye-loaded nanoparticles as a model for drug-loaded nanocarriers, with the level of extravasation evaluated by fluorescence microscopy. The same nanoparticles were then co-injected with submicrometric polymeric cavitation nuclei as a means to promote cavitation activity and decrease the required in-situ acoustic pressure required to attain extravasation. The overall cavitation energy and penetration of the combination was compared to mesoporous silica nanoparticles alone. The results of the present work suggest that combining mesoporous silica nanocarriers and submcrometric cavitation nuclei may help enhance the extravasation of the nanocarrier, thus enabling subsequent sustained drug release to happen from those particles already embedded in the tumour tissue

    Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery

    No full text
    Mesoporous silica nanoparticles have been reported as suitable drug carriers, but their successful delivery to target tissues following systemic administration remains a challenge. In the present work, ultrasound-induced inertial cavitation was evaluated as a mechanism to promote their extravasation in a flow-through tissue-mimicking agarose phantom. Two different ultrasound frequencies, 0.5 or 1.6 MHz, with pressures in the range 0.5–4 MPa were used to drive cavitation activity which was detected in real time. The optimal ultrasound conditions identified were employed to deliver dye-loaded nanoparticles as a model for drug-loaded nanocarriers, with the level of extravasation evaluated by fluorescence microscopy. The same nanoparticles were then co-injected with submicrometric polymeric cavitation nuclei as a means to promote cavitation activity and decrease the required in-situ acoustic pressure required to attain extravasation. The overall cavitation energy and penetration of the combination was compared to mesoporous silica nanoparticles alone. The results of the present work suggest that combining mesoporous silica nanocarriers and submcrometric cavitation nuclei may help enhance the extravasation of the nanocarrier, thus enabling subsequent sustained drug release to happen from those particles already embedded in the tumour tissue

    La Ría de Vigo : una aproximación integral al ecosistema marino de la Ría de Vigo

    No full text
    414 pagesLos fondos de la ría de Vigo : composición, distribución y origen del sedimento / Federico Vilas Martín, Daniel Rey García, Belén Rubio Armesto, Ana M. Bernabeu Tello, Gonzalo Méndez Martínez, Ruth Durán Gallego, Kais Jacob Mohamed Falcón. Hidrografía y dinámica de la ría de Vigo : un sistema de afloramiento / Gabriel Rosón Porto, José Manuel Cabanas, Fiz Fernández Pérez (http://hdl.handle.net/10261/115885). Biogeoquímica de la ría de Vigo: ciclo de las sales nutrientes ; trampa/sumidero de CO2 / Carmen González Castro, Aida Fernández Ríos (http://hdl.handle.net/10261/116063). El plancton de la ría de Vigo / Francisco Gómez Figueiras, Ana Miranda, Isabel Riveiro Alarcón, Alba Ruth Vergara Castaño, Cástor Guisande (http://hdl.handle.net/10261/116072). Episodios de fitoplancton tóxico en la ría de Vigo / Beatriz Reguera Ramírez, Laura Escalera, Yolanda Pazos, Ángeles Moroño. Contaminación / Juan José González, Cristina Álvarez, Ricardo Beiras García-Sabell, Maria Victoria Besada Montenegro, José Fumega, María Ángeles Franco Hernández, Mariano Gómez, Amelia González Quijano, Teresa Nunes, Ricardo Prego Reboredo, José Antonio Soriano Sanz, Lucia Elisa Viñas Diéguez (http://hdl.handle.net/10261/116066). Explotación: pesca, marisqueo y acuicultura en la ría de Vigo / José Benito Peleteiro, Valentín Trujillo, Rafael Bañón Díaz, Jorge Ribó, Mercedes Olmedo, Blanca Álvarez Blázquez, José Luis Rodríguez, Juan Pazó, Juan José Otero. Impacto del hombre sobre el ecosistema de la ría de Vigo: hacia una gestión integrada / Ángel Guerra Sierra, Santiago Lens, Francisco Rocha Valdés (http://hdl.handle.net/10261/116069). Valoración económica del uso recreativo y la conservación / María Xosé Vázquez Rodríguez, Albino Prada BlancoN
    corecore