108 research outputs found

    Observations and models to support the first Marine Ecosystem Assessment for the Southern Ocean (MEASO)

    Get PDF
    Assessments of the status and trends of habitats, species and ecosystems are needed for effective ecosystem-based management in marine ecosystems. Knowledge on imminent ecosystem changes (climate change impacts) set in train by existing climate forcings are needed for adapting management practices to achieve conservation and sustainabililty targets into the future. Here, we describe a process for enabling a marine ecosystem assessment (MEA) by the broader scientific community to support managers in this way, using a MEA for the Southern Ocean (MEASO) as an example. We develop a framework and undertake an audit to support a MEASO, involving three parts. First, we review available syntheses and assessments of the Southern Ocean ecosystem and its parts, paying special attention to building on the SCAR Antarctic Climate Change and Environment report and the SCAR Biogeographic Atlas of the Southern Ocean. Second, we audit available field observations of habitats and densities and/or abundances of taxa, using the literature as well as a survey of scientists as to their current and recent activities. Third, we audit available system models that can form a nested ensemble for making, with available data, circumpolar assessments of habitats, species and food webs. We conclude that there is sufficient data and models to undertake, at least, a circumpolar assessment of the krill-based system. The auditing framework provides the basis for the first MEASO but also provides a repository (www.SOKI.aq/display/MEASO) for easily amending the audit for future MEASOs. We note that an important outcome of the first MEASO will not only be the assessment but also to advise on priorities in observations and models for improving subsequent MEASOs

    Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins

    Get PDF
    The evolutionary and adaptive potential of populations or species facing an emerginginfectious disease depends on their genetic diversity in genes, such as the major histocompatibilitycomplex (MHC). In birds, MHC class I deals predominantly with intracellularinfections (e.g., viruses) and MHC class II with extracellular infections (e.g.,bacteria). Therefore, patterns of MHC I and II diversity may differ between species andacross populations of species depending on the relative effect of local and global environmentalselective pressures, genetic drift, and gene flow. We hypothesize thathigh gene flow among populations of Humboldt and Magellanic penguins limits localadaptation in MHC I and MHC II, and signatures of selection differ between markers,locations, and species. We evaluated the MHC I and II diversity using 454 next-generationsequencing of 100 Humboldt and 75 Magellanic penguins from seven differentbreeding colonies. Higher genetic diversity was observed in MHC I than MHCII for both species, explained by more than one MHC I loci identified. Large populationsizes, high gene flow, and/or similar selection pressures maintain diversity but limitlocal adaptation in MHC I. A pattern of isolation by distance was observed for MHC IIfor Humboldt penguin suggesting local adaptation, mainly on the northernmost studiedlocality. Furthermore, trans-speciesalleles were found due to a recent speciationfor the genus or convergent evolution. High MHC I and MHC II gene diversity describedis extremely advantageous for the long-termsurvival of the species.Fil: Sallaberry Pincheira, Nicole. Pontificia Universidad Católica de Chile; Chile. Universidad Andrés Bello; ChileFil: González Acuña, Daniel. Universidad de Concepción; ChileFil: Padilla, Pamela Solange. Pontificia Universidad Católica de Chile; ChileFil: Dantas, Gisele P. M.. Pontificia Universidade Catolica de Minas Gerais.; BrasilFil: Luna Jorquera, Guillermo. Universidad Católica del Norte; ChileFil: Frere, Esteban. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Centro de Investigaciones Puerto Deseado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valdés Velásquez, Armando. Universidad Peruana Cayetano Heredia; PerúFil: Vianna, Juliana A.. Pontificia Universidad Católica de Chile; Chil

    Managing fishery development in sensitive ecosystems: Identifying penguin habitat use to direct management in Antarctica

    Get PDF
    In the Southern Ocean, the at‐sea distributions of most predators of Antarctic krill are poorly known, primarily because tracking studies have only been undertaken on a restricted set of species, and then only at a limited number of sites. For chinstrap penguins, one of the most abundant krill predators breeding across the Antarctic Peninsula, we show that habitat models developed utilizing the distance from the colony and the bearing to the shelf‐edge, adjusting for the at‐sea density of Pygoscelis penguins from other colonies, can be used to predict, with a high level of confidence, the at‐sea distribution of chinstrap penguins from untracked colonies during the breeding season. Comparison of predicted penguin distributions with outputs from a high‐resolution oceanographic model shows that chinstrap penguins prefer nearshore habitats, over shallow bathymetry, with slow‐flowing waters, but that they sometimes also travel to areas beyond the edge of the continental shelf where the faster‐flowing waters of the Coastal Current or the fronts of the Antarctic Circumpolar Current occur. In the slow‐moving shelf waters, large penguin colonies may lead to krill depletion during incubation and chick‐rearing periods when penguins are acting as central place foragers. The habitats used by chinstrap penguins are also locations preferentially used by the commercial krill fishery, one of the last under‐developed marine capture fisheries anywhere on the planet. As it develops, this fishery has the potential to compete with chinstrap penguins and other natural krill predators. Scaling our habitat models by chinstrap penguin population data demonstrates where overlap with the fishery is likely to be most important. Our results suggest that a better understanding of krill retention and krill depletion in areas used by natural predators and by the krill fishery are needed, and that risk management strategies for the fishery should include assessment of how krill movement can satisfy the demands of both natural predators and the fishery across a range of spatial and temporal scales. Such information will help regional management authorities better understand how plausible ecosystem‐based management frameworks could be developed to ensure sustainable co‐existence of the fishery and competing natural predators

    Using habitat models for chinstrap penguins Pygoscelis antarctica to advise krill fisheries management during the penguin breeding season

    Get PDF
    Aim: To predict the at‐sea distribution of chinstrap penguins across the South Orkney Islands and to quantify the overlap with the Southern Ocean krill fishery. Location: South Orkney Islands, Antarctica. Methods: Penguins from four colonies across the South Orkney Islands were tracked using global positioning systems (GPSs) and time depth recorders (TDRs). Relationships between a variety of environmental and geometric variables and the at‐sea distribution of penguins were investigated using general additive models for the three main phases of the breeding season. Subsequently, the final models were extrapolated across the South Orkney archipelago to predict the at‐sea distribution of penguins from colonies where no tracking data are available. Finally, the overlap between areas used by chinstrap penguins and the krill fishery was quantified. Results: The foraging distribution of chinstrap penguins can be predicted using two simple and static variables: the distance from the colony and the direction of travel towards the shelf‐edge, while avoiding high densities of Pygoscelis penguins from other colonies. Additionally, we find that the chinstrap penguins breeding on the South Orkney Islands use areas which overlap with frequently used krill fishing areas and that this overlap is most prominent during the brood and crèche phases of the breeding season. Main conclusions: This is the first step in understanding the potential impacts of the krill fishery, for all colonies including those where no empirical tracking data are available. However, with the available data, it is not currently possible to infer an impact of the krill fisheries on penguins. With this in mind, we recommend the implementation of monitoring schemes to investigate the effects of prey depletion on predator populations and to ensure that management continues to follow a precautionary approach and is addressed at spatial and temporal scales relevant to ecosystem operation

    Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae)

    Get PDF
    This study was financially supported by the following institutions: the WWF-UK through R. Downie, the Japanese Mombukagakusho and the Japanese Society for the Promotion of Science, the Zone Atelier Antarctique et Subantarctique –LTER France of the CNRS.The Southern Ocean is currently experiencing major environmental changes, including in sea‐ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco‐indicators of environmental conditions in the Antarctic region. Here, based on 9 years of sea‐ice data, we found that the breeding success of Adélie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea‐ice cover (ca. 20%). We further examined the effects of sea‐ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea‐ice cover. The relationship between several dive parameters and sea‐ice cover in the foraging area appears to be quadratic. In years of low and high sea‐ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea‐ice cover. Our study therefore suggests that sea‐ice cover is likely to affect the reproductive performance of Adélie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea‐ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long‐term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations.PostprintPeer reviewe

    Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around South Georgia and Shag Rocks (Southern Ocean)

    Get PDF
    Chaenocephalus aceratus (Family Channicthyidae) is one of the dominant species of demersal fish living on the South Georgia shelf where it is caught in low numbers as by-catch in the mackerel icefish and Antarctic krill commercial fisheries. Data collected during 14 demersal fish surveys, from 1986 to 2006, are analysed to investigate biomass, distribution, growth and diet. Biomass estimates from a swept area method ranged from 4,462 to 28,740 tonnes on the South Georgia and Shag Rock shelves although few fish were caught at Shag Rocks. Analysis of length frequency data indicated that growth was fast in the first five years with males and females attaining lengths at first spawning of 440 mm TL and 520 mm TL. The diet was comprised of fish and crustaceans, with an ontogenetic shift in diet from Euphausia superba and mysids to benthic fish and decapods observed to begin at 250 mm TL. In larger fish (>500 mm TL) the diet was dominated by fish. C. aceratus diet is sufficiently different from the other species of channichthyids around South Georgia to suggest that these species have undergone resource partitioning
    corecore