421 research outputs found

    Space Charge Waves in Cylindrical Plasma Columns

    Get PDF
    When a plasma is of finite transverse cross section, space-charge waves may propagate even in the absence of a drift motion or thermal velocities of the plasma. Some of the properties of these space charge waves have been investigated by regarding the plasma as a dielectric and solving the resulting field equations. The effect of a steady axial magnetic field is considered, but motion of heavy ions and electron temperature effects are neglected. Waves are found to exist at frequencies low compared with the plasma frequency as well as waves with oppositely directed phase and group velocities (backward waves).Many of the features of these waves have been verified experimentally by measuring phase velocity and attenuation of waves along the positive column of a low pressure mercury arc in an axial magnetic field. Measurements of electron density have been made using these waves and the results are compared with those obtained by other methods. An interesting feature of these measurements, of value in plasma diagnostics, is that they can be made with frequencies which are small compared with the plasma frequency

    Flexibility in foraging strategies of Brown Skuas in response to local and seasonal dietary constraints

    Get PDF
    The Brown Skua Stercorarius antarcticus lonnbergi is an opportunistic species that displays a high degree of flexibility in foraging tactics. We deployed global positioning system (GPS) and immersion (activity) loggers on breeding Brown Skuas of known sex, body size and condition at Admiralty Bay, King George Island with the aim to examine the impacts of spatial and seasonal fluctuations in prey availability on movement and foraging behavior. We also investigated whether reversed sexual size dimorphism (females larger than males) in this species leads to differences between sexes in foraging behavior and whether this or other factors contribute to variation in breeding success. Analysis of the GPS data highlighted the high degree of plasticity in foraging behavior among individuals. Although most Brown Skuas were flexible in their feeding tactics, this was not enough to ensure a successful breeding season, as few pairs fledged chicks. During early chick rearing, Brown Skuas spent most of their time on land, feeding almost exclusively on penguin chicks. By late chick rearing, when the availability of penguins had diminished, Brown Skuas supplemented the food obtained on land by traveling to the ocean. All foraging trips to sea occurred during daylight, mostly during the early morning. Despite marked sexual size dimorphism, we failed to find any difference in foraging tactics between males and females. Furthermore, although laying date affected the number of chicks hatched (earlier pairs were more successful), no relationship was found between breeding success and male or female body size, condition or degree of dimorphism within pair

    Electro-Mechanical Modes in Plasma Waveguides

    Get PDF
    In addition to increasing the cut-off frequencies of TM-modes in a waveguide, the introduction of a plasma column into the waveguide also introduces new modes of propagation. The properties of these modes, including the effect of an axial d.c. magnetic field but neglecting ion motion, have been studied by solving the field equations considering the electron plasma as a dielectric. The new modes generally have phase velocities much less than the velocity of light; one type exists down to zero frequency and another type is a backward wave. Neither the metallic conductor nor the axial magnetic field is essential to the existence of slow modes. Angular-dependent modes can exhibit Faraday rotation of polarization. A qualitative explanation of these modes is given in terms of an equivalent electrical circuit for the transmission line. Many of the properties of these modes have been verified experimentally by measuring phase velocity of waves along a mercury-arc discharge in an axial magnetic field. These modes are closely related to space- charge waves in electron beams, and several interesting microwave applications arc suggested

    Integrating Stomach Content and Stable Isotope Analyses to Quantify the Diets of Pygoscelid Penguins

    Get PDF
    Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1) selecting appropriate prey sources, 2) weighting combinations of isotopically similar prey in two-source mixing models and 3) refining predicted contributions of isotopically similar prey in multi-source models

    Spatial and isotopic niche partitioning during winter in chinstrap and Adélie penguins from the South Shetland Islands

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 6 (2015): art125, doi:10.1890/ES14-00287.1.Closely related species with similar ecological requirements should exhibit segregation along spatial, temporal, or trophic niche axes to limit the degree of competitive overlap. For migratory marine organisms like seabirds, assessing such overlap during the non-breeding period is difficult because of long-distance dispersal to potentially diffuse foraging habitats. Miniaturization of geolocation devices and advances in stable isotope analysis (SIA), however, provide a robust toolset to quantitatively track the movements and foraging niches of wide ranging marine animals throughout much of their annual cycle. We used light-based geolocation tags and analyzed stable carbon and nitrogen isotopes from tail feathers to simultaneously characterize winter movements, habitat utilization, and overlap of spatial and isotopic niches of migratory chinstrap (Pygoscelis antarctica) and Adélie (P. adeliae) penguins during the austral winter of 2012. Chinstrap penguins exhibited a higher diversity of movements and occupied portions of the Southern Ocean from 138° W to 30° W within a narrow latitudinal band centered on 60° S. In contrast, all tracked Adélie penguins exhibited smaller-scale movements into the Weddell Sea and then generally along a counter-clockwise path as winter advanced. Inter-specific overlap during the non-breeding season was low except during the months immediately adjacent to the summer breeding season. Intra-specific overlap by chinstraps from adjacent breeding colonies was higher throughout the winter. Spatial segregation appears to be the primary mechanism to maintain inter- and intra-specific niche separation during the non-breeding season for chinstrap and Adélie penguins. Despite low spatial overlap, however, the data do suggest that a narrow pelagic corridor in the southern Scotia Sea hosted both chinstrap and Adélie penguins for most months of the year. Shared occupancy and similar isotopic signatures of the penguins in that region suggests that the potential for inter-specific competition persists during the winter months. Finally, we note that SIA was able to discriminate eastward versus westward migrations in penguins, suggesting that SIA of tail feathers may provide useful information on population-level distribution patterns for future studies.Funds for the GLS tags were provided by the National Marine Sanctuary Foundation. Additional support for this project was provided by a Woods Hole Oceanographic Devonshire Scholarship as well as funding from the Ocean Life Institute and SeaWorld Bush Gardens Conservation Fund to MJP

    The magnetron instability in a pulsar's cylindrical electrosphere

    Full text link
    (abridged) The physics of the pulsar magnetosphere remains poorly constrained by observations. Little is known about their emission mechanism. Large vacuum gaps probably exist, and a non-neutral plasma partially fills the neutron star surroundings to form an electrosphere. We showed that the differentially rotating equatorial disk in the pulsar's electrosphere is diocotron unstable and that it tends to stabilise when relativistic effects are included. However, when approaching the light cylinder, particle inertia becomes significant and the electric drift approximation is violated. In this paper, we study the most general instability, i.e. by including particle inertia effects, as well as relativistic motions. This general non-neutral plasma instability is called the magnetron instability. We linearise the coupled relativistic cold-fluid and Maxwell equations. The non-linear eigenvalue problem for the perturbed azimuthal electric field component is solved numerically. The spectrum of the magnetron instability in a non-neutral plasma column confined between two cylindrically conducting walls is computed for several cylindrical configurations. For a pulsar electrosphere, no outer wall exists. In this case, we allow for electromagnetic wave emission propagating to infinity. When the self-field induced by the plasma becomes significant, it can first increase the growth rate of the magnetron instability. However, equilibrium solutions are only possible when the self-electric field, measured by the parameter ses_{\rm e} and tending to disrupt the plasma configuration, is bounded to an upper limit, se,maxs_{\rm e,max}. For ses_{\rm e} close to but smaller than this value se,maxs_{\rm e,max}, the instability becomes weaker or can be suppressed as was the case in the diocotron regime.Comment: Accepted by A&

    The Palmer LTER: A Long-Term Ecological Research Program at Palmer Station, Antarctica

    Get PDF
    THE ANTARCTIC marine ecosystem-the assemblage of plants, animals, ocean, sea ice, and island components south of the Antarctic Convergence is among the largest readily defined ecosystems on Earth (36 X 106 km2 ) (Hedgpeth, 1977; Petit et al., 1991). This ecosystem is composed of an interconnected system of functionally distinct hydrographic and biogeochemical subdivisions (Treguer and Jacques, 1992) and includes open ocean, frontal regions, shelf-slope waters, sea ice, and marginal ice zones. Oceanic, atmospheric, and biogeochemical processes within this system are thought to be globally significant, have been infrequently studied, and are poorly understood relative to more accessible marine ecosystems (Harris and Stonehouse, 1991; Johannessen et al., 1994). The Palmer Long-Term Ecological Research (Palmer LTER) area west of the Antarctic Peninsula (Fig. la) is a complex combination of a coastal/continental shelf zone and a seasonal sea ice zone, because this area is swept by the yearly advance and retreat of sea ice. The Palmer LTER program is a multidisciplinary program established to study this polar marine ecosystem

    Pollution, habitat loss, fishing and climate change as critical threats to penguins

    Get PDF
    Cumulative human impacts across the world’s oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales.Los impactos humanos acumulativos a lo largo de los océanos del planeta son considerables. Por eso examinamos un solo modelo de grupo taxonómico, los pingüinos (Sphenischidae), para explorar cómo las especies y las comunidades marinas pueden estar en riesgo de disminuir o de extinguirse en el hemisferio sur. Buscamos determinar la amenaza más importante para los pingüinos y sugerir métodos para mitigar estas amenazas. Nuestra revisión tiene relevancia para otros grupos taxonómicos en el hemisferio sur y en las latitudes norteñas, donde los impactos humanos son mayores. Nuestra revisión se basó en una evaluación experta y una revisión de literaratura de las 18 especies de pingüinos; 49 científicos contribuyeron al proceso. Para cada especie de pingüino, consideramos su rango y distribución, tendencias poblacionales y las principales amenazas antropogénicas en aproximadamente los últimos 250 años. Estas amenazas fueron la captura de adultos para obtener aceite, piel y plumas y el uso como carnada para la pesca de cangrejos y langostas: la recolección de huevos; la degradación del hábitat terrestre; la contaminación marina; la pesca accesoria y la competencia por recursos; la variabilidad ambiental y el cambio climático; y el envenenamiento por algas tóxicas y enfermedades. La pérdida de hábitat, la contaminación y la pesca, todos factores que los humanos pueden mitigar, siguen siendo las amenazas principales para las especies de pingüinos. Su resiliencia futura a más impactos por cambio climático dependerá certeramente de que nos enfoquemos en las amenazas actuales a la degradación de hábitats existentes en tierra y en el mar. Sugerimos que la protección de hábitats de reproducción, en conjunto con la designación de reservas marinas de escala apropiada, incluyendo alta mar, será crítica para la conservación futura de los pingüinos. Sin embargo, las zonas de conservación a gran escala no son siempre prácticas o políticamente viables, y otros métodos de manejo basados en ecosistemas que incluyen la zonificación espacial, la mitigación de captura accesoria, y el control fuerte de captura deben desarrollarse para mantener la biodiversidad marina y asegurar que el funcionamiento de los ecosistemas se mantenga a lo largo de una variedad de escalas.Fil: Trathan, Phil N.. British Antartic Survey; Reino UnidoFil: Garcia Borboroglu, Jorge Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Boersma, P. Dee. University of Washington; Estados UnidosFil: Bost, Charles André. Centre d´Etudes Biologiques de Chizé; FranciaFil: Crawford, Robert J. M.. Department of Environmental Affairs; SudáfricaFil: Crossin, Glenn T.. Dalhousie University Halifax; CanadáFil: Cuthbert, Richard. Royal Society for the Protection of Birds; Reino UnidoFil: Dann, Peter. Phillip Island Nature Parks; AustraliaFil: Davis, Lloyd Spencer. University Of Otago; Nueva ZelandaFil: de la Puente, Santiago. Universidad Cayetano Heredia; PerúFil: Ellenberg, Ursula. University Of Otago; Nueva ZelandaFil: Lynch, Heather J.. Stony Brook University; Estados UnidosFil: Mattern, Thomas. University Of Otago; Nueva ZelandaFil: Pütz, Klemens. Antarctic Research Trust; AlemaniaFil: Seddon, Philip J.. University Of Otago; Nueva ZelandaFil: Trivelpiece, Wayne. Southwest Fisheries Science Center; Estados UnidosFil: Wienecke, Bárbara. Australian Antarctic Division; Australi
    • …
    corecore