4 research outputs found

    The Landau Pole and ZZ^{\prime} decays in the 331 bilepton model

    Full text link
    We calculate the decay widths and branching ratios of the extra neutral boson ZZ^{\prime} predicted by the 331 bilepton model in the framework of two different particle contents. These calculations are performed taken into account oblique radiative corrections, and Flavor Changing Neutral Currents (FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices. Contributions of the order of 10110210^{-1}-10^{-2} are obtained in the branching ratios, and partial widths about one order of magnitude bigger in relation with other non- and bilepton models are also obtained. A Landau-like pole arise at 3.5 TeV considering the full particle content of the minimal model (MM), where the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The Landau pole problem can be avoid at the TeV scales if a new leptonic content running below the threshold at % 3 TeV is implemented as suggested by other authors.Comment: 20 pages, 5 figures, LaTeX2

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Cluster studies in molecular beams

    Get PDF
    In the present work we study properties of clusters of small heteroatomic molecules with biological relevance by several experimental methods based on molecular beams. In the first experiment structure and dynamics of size-selected charged pyrrole clusters have been studied by means of molecular beam scattering experiment. Small neutral Pyn clusters were produced in Py/He expansions and larger mixed PynArm clusters in Py/Ar expansions, and the scattering experiment with a secondary beam of He atoms was used to select the neutral clusters of dierent sizes. The complete size-selected fragmentation patterns for the neutral dimer to tetramer after an electron impact ionization at 70 eV from the measurements of the angular and velocity distributions at dierent fragment masses. In second experiment photolysis of size selected pyrrole, imidazole and pyrazole clusters has been investigated. Comparison with the photolysis of an isolated molecules and between studied systems has been made. Clusters were photolyzed at 243 and 193 nm and the kinetic energy distributions of the H-photofragments have been measured and analyzed. Finally the mass spectra of the fragments after multiphoton ionization have been measured. The significant inuence of the cluster environment to the photolytic behavior was observed and discussed

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore