30 research outputs found

    Supplementary report to the final report of the coral reef expert group: S6. Novel technologies in coral reef monitoring

    Get PDF
    [Extract] This report summarises a review of current technological advances applicable to coral reef monitoring, with a focus on the Great Barrier Reef Marine Park (the Marine Park). The potential of novel technologies to support coral reef monitoring within the Reef 2050 Integrated Monitoring and Reporting Program (RIMReP) framework was evaluated based on their performance, operational maturity and compatibility with traditional methods. Given the complexity of this evaluation, this exercise was systematically structured to address the capabilities of technologies in terms of spatial scales and ecological indicators, using a ranking system to classify expert recommendations.An accessible copy of this report is not yet available from this repository, please contact [email protected] for more information

    Detection of an optical transient following the 13 March 2000 short/hard gamma-ray burst

    Full text link
    We imaged the error box of a gamma-ray burst of the short (0.5 s), hard type (GRB 000313), with the BOOTES-1 experiment in southern Spain, starting 4 min after the gamma-ray event, in the I-band. A bright optical transient (OT 000313) with I = 9.4 +/- 0.1 was found in the BOOTES-1 image, close to the error box (3-sigma) provided by BATSE. Late time VRIK'-band deep observations failed to reveal an underlying host galaxy. If the OT 000313 is related to the short, hard GRB 000313, this would be the first optical counterpart ever found for this kind of events (all counterparts to date have been found for bursts of the long, soft type). The fact that only prompt optical emission has been detected (but no afterglow emission at all, as supported by theoretical models) might explain why no optical counterparts have ever been found for short, hard GRBs.This fact suggests that most short bursts might occur in a low-density medium and favours the models that relate them to binary mergers in very low-density enviroments.Comment: Revised version. Accepted for publication in Astronomy and Astrophysics Letters, 5 pages, 3 figure

    A decade of GRB follow-up by BOOTES in Spain (2003-2013)

    Get PDF
    This article covers ten years of GRB follow-ups by the Spanish BOOTES stations: 71 follow-ups providing 23 detections. Follow-ups by BOOTES-1B from 2005 to 2008 were given in the previous article, and are here reviewed, updated, and include additional detection data points as the former article merely stated their existence. The all-sky cameras CASSANDRA have not yet detected any GRB optical afterglows, but limits are reported where available

    BOOTES-IR: Near IR follow-up GRB observations by a robotic system

    Get PDF
    “BOOTES-IR” is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7–10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

    Key Factors Associated With Pulmonary Sequelae in the Follow-Up of Critically Ill COVID-19 Patients

    Get PDF
    Introduction: Critical COVID-19 survivors have a high risk of respiratory sequelae. Therefore, we aimed to identify key factors associated with altered lung function and CT scan abnormalities at a follow-up visit in a cohort of critical COVID-19 survivors. Methods: Multicenter ambispective observational study in 52 Spanish intensive care units. Up to 1327 PCR-confirmed critical COVID-19 patients had sociodemographic, anthropometric, comorbidity and lifestyle characteristics collected at hospital admission; clinical and biological parameters throughout hospital stay; and, lung function and CT scan at a follow-up visit. Results: The median [p25–p75] time from discharge to follow-up was 3.57 [2.77–4.92] months. Median age was 60 [53–67] years, 27.8% women. The mean (SD) percentage of predicted diffusing lung capacity for carbon monoxide (DLCO) at follow-up was 72.02 (18.33)% predicted, with 66% of patients having DLCO < 80% and 24% having DLCO < 60%. CT scan showed persistent pulmonary infiltrates, fibrotic lesions, and emphysema in 33%, 25% and 6% of patients, respectively. Key variables associated with DLCO < 60% were chronic lung disease (CLD) (OR: 1.86 (1.18–2.92)), duration of invasive mechanical ventilation (IMV) (OR: 1.56 (1.37–1.77)), age (OR [per-1-SD] (95%CI): 1.39 (1.18–1.63)), urea (OR: 1.16 (0.97–1.39)) and estimated glomerular filtration rate at ICU admission (OR: 0.88 (0.73–1.06)). Bacterial pneumonia (1.62 (1.11–2.35)) and duration of ventilation (NIMV (1.23 (1.06–1.42), IMV (1.21 (1.01–1.45)) and prone positioning (1.17 (0.98–1.39)) were associated with fibrotic lesions. Conclusion: Age and CLD, reflecting patients’ baseline vulnerability, and markers of COVID-19 severity, such as duration of IMV and renal failure, were key factors associated with impaired DLCO and CT abnormalities

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    © 2016. The American Astronomical Society. All rights reserved. A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Actas de las V Jornadas ScienCity 2022. Fomento de la Cultura Científica, Tecnológica y de Innovación en Ciudades Inteligentes

    Get PDF
    ScienCity es una actividad que viene siendo continuada desde 2018 con el objetivo de dar a conocer los conocimientos y tecnologías emergentes siendo investigados en las universidades, informar de experiencias, servicios e iniciativas puestas ya en marcha por instituciones y empresas, llegar hasta decisores políticos que podrían crear sinergias, incentivar la creación de ideas y posibilidades de desarrollo conjuntas, implicar y provocar la participación ciudadana, así como gestar una red internacional multidisciplinar de investigadores que garantice la continuación de futuras ediciones. En 2022 se recibieron un total de 48 trabajos repartidos en 25 ponencias y 24 pósteres pertenecientes a 98 autores de 14 instituciones distintas de España, Portugal, Polonia y Países Bajos.Fundación Española para la Ciencia y la Tecnología-Ministerio de Ciencia, Innovación y Universidades; Consejería de la Presidencia, Administración Pública e Interior de la Junta de Andalucía; Estrategia de Política de Investigación y Transferencia de la Universidad de Huelva; Cátedra de Innovación Social de Aguas de Huelva; Cátedra de la Provincia; Grupo de investigación TEP-192 de Control y Robótica; Centro de Investigación en Tecnología, Energía y Sostenibilidad (CITES

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams. </p
    corecore