13 research outputs found

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The European Bone and Joint Infection Society definition of periprosthetic joint infection is meaningful in clinical practice: a multicentric validation study with comparison with previous definitions

    Get PDF
    Background and purpose: A new periprosthetic joint infection (PJI) definition has recently been proposed by the European Bone and Joint Infection Society (EBJIS). The goals of this paper are to evaluate its diagnostic accuracy and compare it with previous definitions and to assess its accuracy in preoperative diagnosis. Patients and methods: We retrospectively evaluated a multicenter cohort of consecutive revision total hip and knee arthroplasties. Cases with minimum required diagnostic workup were classified according to EBJIS, 2018 International Consensus Meeting (ICM 2018), Infectious Diseases Society of America (IDSA), and modified 2013 Musculoskeletal Infection Society (MSIS) definitions. 2 years’ minimum follow-up was required to assess clinical outcome. Results: Of the 472 cases included, PJI was diagnosed in 195 (41%) cases using EBJIS; 188 (40%) cases using IDSA; 172 (36%) using ICM 2018; and 145 (31%) cases using MSIS. EBJIS defined fewer cases as intermediate (5% vs. 9%; p = 0.01) compared with ICM 2018. Specificity was determined by comparing risk of subsequent PJI after revision surgery. Infected cases were associated with higher risk of subsequent PJI in every definition. Cases classified as likely/confirmed infections using EBJIS among those classified as not infected in other definitions showed a significantly higher risk of subsequent PJI compared with concordant non-infected cases using MSIS (RR = 3, 95% CI 1–6), but not using ICM 2018 (RR = 2, CI 1–6) or IDSA (RR = 2, CI 1–5). EBJIS showed the highest agreement between pre-operative and definitive classification (k = 0.9, CI 0.8–0.9) and was better at ruling out PJI with an infection unlikely result (sensitivity 89% [84–93], negative predictive value 90% [85–93]). Conclusion: The newly proposed EBJIS definition emerged as the most sensitive of all major definitions. Cases classified as PJI according to the EBJIS criteria and not by other definitions seem to have increased risk of subsequent PJI compared with concordant non-infected cases. EBJIS classification is accurate in ruling out infection preoperatively

    The influence of duration of infection on outcome of debridement and implant retention in fracture-related infection

    No full text
    AIMS: The principle strategies of fracture-related infection (FRI) treatment are debridement, antimicrobial therapy, and implant retention (DAIR) or debridement, antimicrobial therapy, and implant removal/exchange. Increasing the period between fracture fixation and FRI revision surgery is believed to be associated with higher failure rates after DAIR. However, a clear time-related cut-off has never been scientifically defined. This systematic review analyzed the influence of the interval between fracture fixation and FRI revision surgery on success rates after DAIR. METHODS: A systematic literature search was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, in PubMed (including MEDLINE), Embase, and Web of Science Core Collection, investigating the outcome after DAIR procedures of long bone FRIs in clinical studies published until January 2020. RESULTS: Six studies, comprising 276 patients, met the inclusion criteria. Data from this review showed that with a short duration of infection (up to three weeks) and under strict preconditions, retention of the implant is associated with high success rates of 86% to 100%. In delayed infections with a fracture fixation-FRI revision surgery interval of three to ten weeks, absence of recurrent infection was reported in 82% to 89%. Data on late FRIs, with a fracture fixation-FRI revision surgery interval of more than ten weeks, are scarce and a success rate of 67% was reported. CONCLUSION: Acute/early FRI, with a short duration of infection, can successfully be treated with DAIR up to ten weeks after osteosynthesis. The limited available data suggest that chronic/late onset FRI treated with DAIR may be associated with a higher rate of recurrence. Successful outcome is dependent on managing all aspects of the infection. Thus, time from fracture fixation is not the only factor that should be considered in treatment planning of FRI. Due to the heterogeneity of the available data, these conclusions have to be interpreted with caution. Cite this article: Bone Joint J 2021;103-B(2):213-221

    The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren

    No full text
    Bone healing is a complicated process of tissue regeneration that is influenced by multiple biological and biomechanical processes. In a minority of cases, these physiological processes are complicated by issues such as nonunion and/or fracture-related infection (FRI). Based on a select few in vivo experimental animal studies, construct stability is considered an important factor influencing both prevention and treatment of FRI. Stephan Perren played a pivotal role in the evolution of our current understanding of the critical relationship between biomechanics, fracture healing and infection. Furthermore, his concept of strain theory and the process of fracture healing is familiar to several generations of surgeons and has influenced implant development and design for the past 50 years. In this review we describe the role of biomechanical stability on fracture healing, and provide a detailed analysis of the preclinical studies addressing this in the context of FRI. Furthermore, we demonstrate how Perren's concepts of stability are still applied to current surgical techniques to aid in the prevention and treatment of FRI. Finally, we highlight the key knowledge gaps in the underlying basic research literature that need to be addressed as we continue to optimize patient care.status: publishe

    The influence of biomechanical stability on bone healing and fracture-related infection : the legacy of Stephan Perren

    No full text
    Bone healing is a complicated process of tissue regeneration that is influenced by multiple biological and biomechanical processes. In a minority of cases, these physiological processes are complicated by issues such as nonunion and/or fracture-related infection (FRI). Based on a select few in vivo experimental animal studies, construct stability is considered an important factor influencing both prevention and treatment of FRI. Stephan Perren played a pivotal role in the evolution of our current understanding of the critical relationship between biomechanics, fracture healing and infection. Furthermore, his concept of strain theory and the process of fracture healing is familiar to several generations of surgeons and has influenced implant development and design for the past 50 years. In this review we describe the role of biomechanical stability on fracture healing, and provide a detailed analysis of the preclinical studies addressing this in the context of FRI. Furthermore, we demonstrate how Perren's concepts of stability are still applied to current surgical techniques to aid in the prevention and treatment of FRI. Finally, we highlight the key knowledge gaps in the underlying basic research literature that need to be addressed as we continue to optimize patient care.</p

    Higgs boson potential at colliders: status and perspectives

    No full text
    This document summarises the current theoretical and experimental status of the di-Higgs boson production searches, and of the direct and indirect constraints on the Higgs boson self-coupling, with the wish to serve as a useful guide for the next years. The document discusses the theoretical status, including state-of-the-art predictions for di-Higgs cross sections, developments on the effective field theory approach, and studies on specific new physics scenarios that can show up in the di-Higgs final state. The status of di-Higgs searches and the direct and indirect constraints on the Higgs self-coupling at the LHC are presented, with an overview of the relevant experimental techniques, and covering all the variety of relevant signatures. Finally, the capabilities of future colliders in determining the Higgs self-coupling are addressed, comparing the projected precision that can be obtained in such facilities. The work has started as the proceedings of the Di-Higgs workshop at Colliders, held at Fermilab from the 4th to the 9th of September 2018, but it went beyond the topics discussed at that workshop and included further developments. Part III of the document reviews the capabilities of future colliders to establish the the size of Higgs self-coupling both qualitatively and quantitatively

    Searches for the ZγZ\gamma decay mode of the Higgs boson and for new high-mass resonances in pppp collisions at s=13\sqrt{s} = 13 TeV with the ATLAS detector

    No full text
    International audienceThis article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb1^{−1} of pp collisions at s=13 \sqrt{s}=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Zγ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Zγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level

    Search for direct top squark pair production in final states with two leptons in s=13\sqrt{s} = 13 TeV pppp collisions with the ATLAS detector

    No full text
    International audienceThe results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb136.1~\hbox {fb}^{-1} of integrated luminosity from proton–proton collisions at s=13\sqrt{s}=13 TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark t~\tilde{t} and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay t~bχ~1±\tilde{t} \rightarrow b \tilde{\chi }_{1}^{\pm } into a b-quark and the lightest chargino with χ~1±Wχ~10\tilde{\chi }_{1}^{\pm } \rightarrow W \tilde{\chi }_{1}^{0} , the decay t~tχ~10\tilde{t} \rightarrow t \tilde{\chi }_{1}^{0} into an on-shell top quark and the lightest neutralino, the three-body decay t~bWχ~10\tilde{t} \rightarrow b W \tilde{\chi }_{1}^{0} and the four-body decay t~bνχ~10\tilde{t} \rightarrow b \ell \nu \tilde{\chi }_{1}^{0} . No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the t~\tilde{t} and χ~10\tilde{\chi }_{1}^{0} masses. The results exclude at 95% confidence level t~\tilde{t} masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches

    Measurements of ttˉt\bar{t} differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pppp collisions at s=13\sqrt{s}=13\, TeV using the ATLAS detector

    No full text
    Measurements are made of differential cross-sections of highly boosted pair-produced top quarks as a function of top-quark and ttˉt\bar{t} system kinematic observables using proton--proton collisions at a center-of-mass energy of s=13\sqrt{s} = 13 TeV. The data set corresponds to an integrated luminosity of 36.136.1 fb1^{-1}, recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one with transverse momentum pT>500p_{\rm T} > 500 GeV and a second with pT>350p_{\rm T}>350 GeV, are used for the measurement. The top-quark candidates are separated from the multijet background using jet substructure information and association with a bb-tagged jet. The measured spectra are corrected for detector effects to a particle-level fiducial phase space and a parton-level limited phase space, and are compared to several Monte Carlo simulations by means of calculated χ2\chi^2 values. The cross-section for ttˉt\bar{t} production in the fiducial phase-space region is 292±7 (stat)±76(syst)292 \pm 7 \ \rm{(stat)} \pm 76 \rm{(syst)} fb, to be compared to the theoretical prediction of 384±36384 \pm 36 fb

    Study of the material of the ATLAS inner detector for Run 2 of the LHC

    No full text
    International audienceThe ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb−1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation
    corecore