43 research outputs found

    A Novel Intervention Technology for Cerebral Palsy: Brain Stimulation

    Get PDF
    Abstract:A common pediatric disorder with posture and motor dysfunctionin neurological diseases is known as cerebral palsy (CP). Recently,a series of effective techniques have been developed for treatmentof CP. These promising methods need high-tech equipment forbrain stimulation and mainly classified into invasive and noinvasiveapproaches. This study aimed to introduce these techniquesfor treatment of patients who suffer from CP. The potential andperformance of currently available brain stimulation techniques havebeen mentioned in detail. Moreover, the clinical application, safety,efficacy and challenges of these methods have been discussed. Herewe review the recent advances in the CP treatment with an emphasison brain stimulation techniquesKeywords:Cerebral palsy; Brain stimulation; Pediatric disorde

    Additive manufacturing of bioactive glass biomaterials

    Get PDF
    Tissue engineering (TE) and regenerative medicine have held great promises for the repair and regeneration of damaged tissues and organs. Additive manufacturing has recently appeared as a versatile technology in TE strategies that enables the production of objects through layered printing. By applying 3D printing and bioprinting, it is now possible to make tissue-engineered constructs according to desired thickness, shape, and size that resemble the native structure of lost tissues. Up to now, several organic and inorganic materials were used as raw materials for 3D printing; bioactive glasses (BGs) are among the most hopeful substances regarding their excellent properties (e.g., bioactivity and biocompatibility). In addition, the reported studies have confirmed that BG-reinforced constructs can improve osteogenic, angiogenic, and antibacterial activities. This review aims to provide an up-to-date report on the development of BG-containing raw biomaterials that are currently being employed for the fabrication of 3D printed scaffolds used in tissue regeneration applications with a focus on their advantages and remaining challenges

    A novel intervention technology for cerebral palsy: Brain stimulation

    Get PDF
    A common pediatric disorder with posture and motor dysfunction in neurological diseases is known as cerebral palsy (CP). Recently, a series of effective techniques have been developed for treatment of CP. These promising methods need high-tech equipment for brain stimulation and mainly classified into invasive and no-invasive approaches. This study aimed to introduce these techniques for treatment of patients who suffer from CP. The potential and performance of currently available brain stimulation techniques have been mentioned in detail. Moreover, the clinical application, safety, efficacy and challenges of these methods have been discussed. Here we review the recent advances in the CP treatment with an emphasis on brain stimulation techniques. © 2019, Iranian Child Neurology Society. All rights reserved

    Timing of surgery following SARS-CoV-2 infection: an international prospective cohort study.

    Get PDF
    Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay

    Additively manufactured small-diameter vascular grafts with improved tissue healing using a novel SNAP impregnation method

    No full text
    The vascular network has a complex architecture such as branches, curvatures, and bifurcations which is even more complicated in view of individual patients' defect anatomy requiring custom-specifically designed vascular implants. In this work, 3D printing is used to overcome these challenges and a new shorter impregnation method was developed to incorporate S-nitroso-N-acetyl-d-penicillamine (SNAP) as a nitric oxide (NO) donor to printed grafts. The 3D-printed small-diameter vascular grafts (SDVGs) were impregnated with SNAP solution during SNAP synthesis (S1) or with SNAP dissolved in methanol (S2). The advantage of the newly developed S1 impregnation method is the elimination of the synthesis step by direct impregnation inside the S1 solution. Scanning electron microscopy imaging reveals the successful crystal formation in both methods. The results demonstrate that both S1- and S2-impregnated grafts, after covering with polycaprolactone topcoat, can release NO in a controlled manner and in the physiological range (0.5-4.0 × 10-10 mol cm-2 min-1 ) over a 15 days period. The created grafts with a NO-releasing surface have also shown bactericidal effect while the healing properties of the implant were improved by promoting migration and proliferation of endothelial cells (ECs). These results suggest that incorporation of 3D printing technology with the newly developed S1 impregnation of SNAP can optimize and shorten the manufacturing process of the next generation of patient-based antibacterial SDVGs with a higher attraction for ECs.status: publishe

    3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering

    No full text
    In order to promote bone healing, new generations of biomaterials are under development. These biomaterials should demonstrate proper biological and mechanical properties preferably similar to the natural bone tissue. In this research, 3D-printed barium strontium titanate (BST)/β-tricalcium phosphate (β-TCP) composite scaffolds have been synthesized as an alternative strategy for bone regeneration to not only induce appropriate bioactive characteristics but also piezoelectric behavior. The physical, chemical and biological performance of the scaffolds have been examined in terms of mechanical, dielectric properties, apatite-forming ability, Alizarin Red Staining (ARS), Alkaline Phosphatase activity (ALP), and cytotoxicity. The samples composed of 60 BST and 40 β-TCP showed the highest compressive strength, bending module, elastic modulus and the Young's modulus. The dielectric constant increased with further addition of the BST phase in the constructs. Scanning Electron Microscope (SEM) and energy dispersive X-ray (EDX) analyses showed that 60 BST/40 β-TCP sample had the highest amount of bone-like apatite formation after 28 days in simulated body fluid (SBF). Moreover, the results of ARS proved that 60 BST/40 β-TCP composite could present higher quantities of mineral deposition. The ALP activity of osteosarcoma cells on 60 BST/40 β-TCP sample showed higher activities compare with the other composites. None of the samples demonstrated any sign of toxicity using MTT test. It can be suggested that BST/β-TCP composite scaffolds can be potentially used as the next generation of bone tissue engineering scaffold materials. © 2019 Elsevier Ltd and Techna Group S.r.l

    Additively manufactured small-diameter vascular grafts with improved tissue healing using a novel SNAP impregnation method

    No full text
    The vascular network has a complex architecture such as branches, curvatures, and bifurcations which is even more complicated in view of individual patients' defect anatomy requiring custom-specifically designed vascular implants. In this work, 3D printing is used to overcome these challenges and a new shorter impregnation method was developed to incorporate S-nitroso-N-acetyl-d-penicillamine (SNAP) as a nitric oxide (NO) donor to printed grafts. The 3D-printed small-diameter vascular grafts (SDVGs) were impregnated with SNAP solution during SNAP synthesis (S1) or with SNAP dissolved in methanol (S2). The advantage of the newly developed S1 impregnation method is the elimination of the synthesis step by direct impregnation inside the S1 solution. Scanning electron microscopy imaging reveals the successful crystal formation in both methods. The results demonstrate that both S1- and S2-impregnated grafts, after covering with polycaprolactone topcoat, can release NO in a controlled manner and in the physiological range (0.5�4.0 � 10�10 mol cm�2 min�1) over a 15 days period. The created grafts with a NO-releasing surface have also shown bactericidal effect while the healing properties of the implant were improved by promoting migration and proliferation of endothelial cells (ECs). These results suggest that incorporation of 3D printing technology with the newly developed S1 impregnation of SNAP can optimize and shorten the manufacturing process of the next generation of patient-based antibacterial SDVGs with a higher attraction for ECs. © 2019 Wiley Periodicals, Inc

    Influence of pore sizes in 3D-scaffolds on mechanical properties of scaffolds and survival, distribution, and proliferation of human chondrocytes

    No full text
    Articular cartilage has weak intrinsic self-healing capacity. Tissue engineering is an appropriate option for cartilage regeneration. This research was designed to evaluate the effects of pore size in scaffolds on mechanical properties and chondrocyte-scaffold interactions. PCL scaffolds were fabricated with large, medium, and small pore sizes. The constructs were analyzed by SEM, swelling tests, mechanical tests, MTT assay, and H&E staining after chondrocyte seeding. Mechanical features of the scaffolds were near to human articular cartilage. Our findings suggest that the PCL scaffold with medium pore sizes provides suitable mechanical strength and better chondrocyte-scaffold interactions simultaneously for application in cartilage
    corecore