95 research outputs found

    Global Controls on DOC Reaction Versus Export in Watersheds: A Damköhler Number Analysis

    Get PDF
    The relative capacity for watersheds to eliminate or export reactive constituents has important implications on aquatic ecosystem ecology and biogeochemistry. Removal efficiency depends on factors that affect either the reactivity or advection of a constituent within river networks. Here, we characterized Damköhler number (Da) for dissolved organic carbon (DOC) uptake in global river networks. Da equals the advection to reaction timescale ratio and thus provides a unitless indicator for DOC reaction intensity during transport within river networks. We aim to demonstrate the spatial and temporal patterns and interplays among factors that determine DOC uptake across global river networks. We show that watershed size imposes a primary control on river network DOC uptake due to a three orders of magnitude difference in water residence time (WRT) between the smallest and largest river networks. DOC uptake capacity in tropical river networks is 2–6 times that in temperate and the Arctic river networks, coinciding with larger DOC removals in warm than in cold watersheds. River damming has a profound impact on DOC uptake due to significantly extended WRTs, particularly in temperate watersheds where most constructed dams are situated. Global warming is projected to increase river network DOC uptake by ca. 19% until year 2100 under the RCP4.5 scenario

    Lake Morphometry and River Network Controls on Evasion of Terrestrially Sourced Headwater CO₂

    Get PDF
    Lakes are central components of the inland water system distinct from, yet inextricably connected to, river networks. Currently, existing network-scale biogeochemistry research, although robust, typically treats each of these components separately or reductively. Here, we incorporate lake morphometry into a fully connected stream/lake network for the Connecticut River watershed and model potential evasion of terrestrially sourced headwater CO2 as transported through the network, ignoring in-stream production. We found that approximately 25%–30% of total potential soil CO2 evasion occurs in lakes, and percent evasion is inversely related to streamflow. A lake's ability to evade CO2 is controlled by residence time and size: most lakes with residence time over 7 days or surface area greater than 0.004 km2 evade functionally all terrestrial CO2 entering from upstream, precluding further downstream transport. We conclude that lakes are important for soil CO2 degassing and that this coupled river/lake approach is promising for CO2 studies henceforth

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Searches for new physics using the t(t)over-bar invariant mass distribution in pp collisions at √s=8 TeV

    Get PDF
    This is the pre-print version of the final published paper that is available from the link belowSearches for anomalous top quark-antiquark production are presented, based on pp collisions at √s=8  TeV . The data, corresponding to an integrated luminosity of 19:7 fb^-1, were collected with the CMS detector at the LHC. The observed tt invariant mass spectrum is found to be compatible with the standard model prediction. Limits on the production cross section times branching fraction probe, for the first time, a region of parameter space for certain models of new physics not yet constrained by precision measurements

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF
    • 

    corecore