2,299 research outputs found

    Anisotropic evolution of D-dimensional FRW spacetime

    Full text link
    We examine the time evolution of the D=d+4 dimensional Einstein field equations subjected to a flat Robertson-Walker metric where the 3D and higher-dimensional scale factors are allowed to evolve at different rates. We find the exact solution to these equations for a single fluid component, which yields two limiting regimes offering the 3D scale factor as a function of the time. The fluid regime solution closely mimics that described by 4D FRW cosmology, offering a late-time behavior for the 3D scale factor after becoming valid in the early universe, and can give rise to a late-time accelerated expansion driven by vacuum energy. This is shown to be preceded by an earlier volume regime solution, which offers a very early-time epoch of accelerated expansion for a radiation-dominated universe for d=1. The time scales describing these phenomena, including the transition from volume to fluid regime, are shown to fall within a small fraction of the first second when the fundamental constants of the theory are aligned with the Planck time. This model potentially offers a higher-dimensional alternative to scalar-field inflationary theory and a consistent cosmological theory, yielding a unified description of early- and late-time accelerated expansions via a 5D spacetime scenario.Comment: Title changed from "A possible higher-dimensional alternative to scalar-field inflationary theory". Several new results have been added including a predicted lower- and upper-bound on the time scales marking the end of an early-time inflationary epoch and the beginning of an FRW epoch for d=

    Effect of surface motion on the rotational quadrupole alignment parameter of D 2 reacting on Cu(111)

    Get PDF
    Ab initio molecular dynamics (AIMD) calculations using the specific reaction parameter approach to density functional theory are presented for the reaction of D2 on Cu(111) at high surface temperature (Ts = 925 K). The focus is on the dependence of reaction on the alignment of the molecule’s angular momentum relative to the surface. For the two rovibrational states for which measured energy resolved rotational quadrupole alignment parameters are available, and for the energies for which statistically accurate rotational quadrupole alignment parameters could be computed, statistically significant results of our AIMD calculations are that, on average, (i) including the effect of the experimental surface temperature (925 K) in the AIMD simulations leads to decreased rotational quadrupole alignment parameters, and (ii) including this effect leads to increased agreement with experimentC. Díaz gratefully acknowledges support under MICINN project FIS2010-15127 and CAM program NANOBIOMAGNET S2009/MAT1726. B. Jackson gratefully acknowledges support from the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U. S. Department of Energy, under Grant No. DE-FG02-87ER1374

    Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    Get PDF
    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum ( 3c0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated

    State-to-state methane-surface scattering as a probe of catalytic activity

    Get PDF
    Quantum state-resolved scattering experiments for methane molecules colliding with a catalytically active nickel surface are compared to scattering from a nickel surface passivated by a single layer of graphene. The vibrational state distribution of the scattered methane is observed to differ dramatically for the two surfaces. Quantum-mechanical inelastic scattering calculations show that these differences are related to the catalytic activity of the surface impact site. Our results demonstrate how inelastic scattering can be used to probe the reactive potential-energy surfaces of molecule-metal systems important to heterogeneous catalysis

    Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution

    Get PDF
    The ability to recover water from urine and flush water is a critical process to allow long term sustainable human habitation in space or bases on the moon or mars. Organic N present as urea or similar compounds can hydrolyze producing free ammonia. This reaction results in an increase in the pH converting ammonium to ammonia which is volatile and not removed by distillation. The increase in pH will also cause precipitation reactions to occur. In order to prevent this, urine on ISS is combined with a pretreat solution. While use of a pretreatment solution has been successful, there are numerous draw backs including: storage and use of highly hazardous solutions, limitations on water recovery (less than 85%), and production of brine with pore dewatering characteristics. We evaluated the use of biologically treated habitation wastewaters (ISS and early planetary base) to replace the current pretreat solution. We evaluated both amended and un-amended bioreactor effluent. For the amended effluent, we evaluated "green" pretreat chemicals including citric acid and citric acid amended with benzoic acid. We used a mock urine/air separator modeled after the urine collection assembly on ISS. The urine/air separator was challenged continually for >6 months. Depending on the test point, the separator was challenged daily with donated urine and flushed with amended or un-amended reactor effluent. We monitored the pH of the urine, flush solution and residual pH in the urine/air separator after each urine event. We also evaluated solids production and biological growth. Our results support the use of both un-amended and amended bioreactor effluent to maintain the operability of the urine /air separator. The ability to use bioreactor effluent could decrease consumable cost, reduce hazards associated with current pre-treat chemicals, allow other membrane based desalination processes to be utilized, and improve brine characteristics

    Comparison of Dislocation Characterization by Electron Channeling Contrast Imaging and Cross-Correlation Electron Backscattered Diffraction

    Get PDF
    In this work, the relative capabilities and limitations of electron channeling contrast imaging (ECCI) and cross-correlation electron backscattered diffraction (CC-EBSD) have been assessed by studying the dislocation distributions resulting from nanoindentation in body centered cubic Ta. Qualitative comparison reveals very similar dislocation distributions between the CC-EBSD mapped GNDs and the ECC imaged dislocations. Approximate dislocation densities determined from ECC images compare well to those determined by CC-EBSD. Nevertheless, close examination reveals subtle differences in the details of the distributions mapped by these two approaches. The details of the dislocation Burgers vectors and line directions determined by ECCI have been compared to those determined using CC-EBSD and reveal good agreement

    Quantum state-resolved CH4 dissociation on Pt(111): coverage dependent barrier heights from experiment and density functional theory

    Get PDF
    The dissociative chemisorption of CH4 on Pt(111) was studied using quantum state-resolved methods at a surface temperature (Ts) of 150 K where the nascent reaction products CH3(ads) and H(ads) are stable and accumulate on the surface. Most previous experimental studies of methane chemisorption on transition metal surfaces report only the initial sticking coefficients S0 on a clean surface. Reflection absorption infrared spectroscopy (RAIRS), used here for state resolved reactivity measurements, enables us to monitor the CH3(ads) uptake during molecular beam deposition as a function of incident translational energy (Et) and vibrational state (n3 anti-symmetric C–H stretch of CH4) to obtain the initial sticking probability S0, the coverage dependence of the sticking probability S(y) and the CH3(ads) saturation coverage ysat. We observe that both S0 and ysat increase with increasing Et as well as upon n3 excitation of the incident CH4 which indicates a coverage dependent dissociation barrier height for the dissociation of CH4 on Pt(111) at low surface temperature. This interpretation is supported by density functional calculations of barrier heights for dissociation, using large supercells containing one or more H and/or methyl adsorbates. We find a significant increase in the activation energies with coverage. These energies are used to construct simple models that reasonably reproduce the uptake data and the observed saturation coverages

    Warped Reheating in Multi-Throat Brane Inflation

    Full text link
    We investigate in some quantitative details the viability of reheating in multi-throat brane inflationary scenarios by estimating and comparing the time scales for the various processes involved. We also calculate within perturbative string theory the decay rate of excited closed strings into KK modes and compare with that of their decay into gravitons; we find that in the inflationary throat the former is preferred. We also find that over a small but reasonable range of parameters of the background geometry, these KK modes will preferably tunnel to another throat (possibly containing the Standard Model) instead of decaying to gravitons due largely to their suppressed coupling to the bulk gravitons. Once tunneled, the same suppressed coupling to the gravitons again allows them to reheat the Standard Model efficiently. We also consider the effects of adding more throats to the system and find that for extra throats with small warping, reheating still seems viable.Comment: 29 pages, 4 figures, discussions on closed string decay expanded, references adde

    Distance constraints between microRNA target sites dictate efficacy and cooperativity

    Get PDF
    MicroRNAs (miRNAs) have the potential to regulate the expression of thousands of genes, but the mechanisms that determine whether a gene is targeted or not are poorly understood. We studied the genomic distribution of distances between pairs of identical miRNA seeds and found a propensity for moderate distances greater than about 13 nt between seed starts. Experimental data show that optimal down-regulation is obtained when two seed sites are separated by between 13 and 35 nt. By analyzing the distance between seed sites of endogenous miRNAs and transfected small interfering RNAs (siRNAs), we also find that cooperative targeting of sites with a separation in the optimal range can explain some of the siRNA off-target effects that have been reported in the literature

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore