36 research outputs found

    Profile of a cell test database and a corresponding reliability database

    Get PDF
    The development of computerized control, and data retrieval for aerospace cell testing affords an excellent opportunity to incorporate three specific concepts to both manage the test area and to track product performance on a real-time basis. The adoption and incorporation of precepts fostered by this total quality management (TQM) initiative are critical to us for retaining control of our business while substantially reducing the separate quality control inspection activity. Test discrepancies are all 'equally bad' in cell acceptance testing because, for example, we presently do not discriminate between 1 or 25 mV for an overvoltage condition. We must take leadership in classifying such discrepancies in order to expedite their clearance and redirect our resources for prevention activities. The development and use of engineering alerts (or guardbanding) which more closely match our product capabilities and are toleranced tighter than the required customer specification are paramount to managing the test unit in order to remain both quality and cost effective

    The biogeochemical impact of glacial meltwater from Southwest Greenland

    Get PDF
    Biogeochemical cycling in high-latitude regions has a disproportionate impact on global nutrient budgets. Here, we introduce a holistic, multi-disciplinary framework for elucidating the influence of glacial meltwaters, shelf currents, and biological production on biogeochemical cycling in high-latitude continental margins, with a focus on the silica cycle. Our findings highlight the impact of significant glacial discharge on nutrient supply to shelf and slope waters, as well as surface and benthic production in these regions, over a range of timescales from days to thousands of years. Whilst biological uptake in fjords and strong diatom activity in coastal waters maintains low dissolved silicon concentrations in surface waters, we find important but spatially heterogeneous additions of particulates into the system, which are transported rapidly away from the shore. We expect the glacially-derived particles – together with biogenic silica tests – to be cycled rapidly through shallow sediments, resulting in a strong benthic flux of dissolved silicon. Entrainment of this benthic silicon into boundary currents may supply an important source of this key nutrient into the Labrador Sea, and is also likely to recirculate back into the deep fjords inshore. This study illustrates how geochemical and oceanographic analyses can be used together to probe further into modern nutrient cycling in this region, as well as the palaeoclimatological approaches to investigating changes in glacial meltwater discharge through time, especially during periods of rapid climatic change in the Late Quaternary

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Seasonal Fluctuations of Astrovirus, But Not Coronavirus Shedding in Bats Inhabiting Human-Modified Tropical Forests

    Get PDF
    Emerging infectious diseases (EIDs) are considered a major threat to global health. Most EIDs appear to result from increased contact between wildlife and humans, especially when humans encroach into formerly pristine habitats. Habitat deterioration may also negatively affect the physiology and health of wildlife species, which may eventually lead to a higher susceptibility to infectious agents and/or increased shedding of the pathogens causing EIDs. Bats are known to host viruses closely related to important EIDs. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the occurrence of astro- and coronaviruses in eight bat species. In contrast to our hypothesis, anthropogenic habitat disturbance was not associated with corona- and astrovirus detection rates in fecal samples. However, we found that bats infected with either astro- or coronaviruses were likely to be coinfected with the respective other virus. Additionally, we identified two more risk factors influencing astrovirus shedding. First, the detection rate of astroviruses was higher at the beginning of the rainy compared to the dry season. Second, there was a trend that individuals with a poor body condition had a higher probability of shedding astroviruses in their feces. The identification of risk factors for increased viral shedding that may potentially result in increased interspecies transmission is important to prevent viral spillovers from bats to other animals, including humans

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo AlarcĂłn, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, RenĂ© GuillĂ©n Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, FabrĂ­cio Alvim Carvalho, FlĂĄvio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz AragĂŁo, Ana Claudia AraĂșjo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, FabrĂ­cio Baccaro, PlĂ­nio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, JosĂ© LuĂ­s Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, FlĂĄvia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, JosĂ© Romualdo de Sousa Lima, MĂĄrio do EspĂ­rito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila LaĂ­s Farrapo, LetĂ­cia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. GarcĂ­a, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, IĂȘda LeĂŁo do Amaral, Carolina Levis, Antonio S. Lima, MaurĂ­cio Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, SalomĂŁo Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina MĂŒller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de AraĂșjo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo JosĂ© Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, JosĂ© Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael SalomĂŁo, FlĂĄvia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana SimĂŁo Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima CĂ©lia GuimarĂŁes Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure SonkĂ©, Hermann Taedoumg, Lise Zemagho, Sean Thomas, FidĂšle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-DĂĄvila, Juan Carlos AndrĂ©s Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon CalderĂłn, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando GarcĂ­a, Alejandro GĂłmez, Roy GonzĂĄlez-M., Álvaro IdĂĄrraga-PiedrahĂ­ta, Eliana Jimenez, RubĂ©n Jurado, Wilmar LĂłpez Oviedo, RenĂ© LĂłpez-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen PĂ©rez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin RodrĂ­guez, Gina M. Rodriguez M., AgustĂ­n Rudas, Pablo Stevenson, MarkĂ©ta ChudomelovĂĄ, Martin Dancak, Radim HĂ©dl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene BĂĄez, Carlos CĂ©ron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice BĂ©nĂ©det, Wemo Betian, Vincent Bezard, Damien Bonal, JerĂŽme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas LabriĂšre, PĂ©trus Naisso, Maxime RĂ©jou-MĂ©chain, Plinio Sist, Lilian Blanc, Benoit Burban, GĂ©raldine Derroire, AurĂ©lie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, FidĂšle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel DurĂĄn Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno HĂ©rault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen ArĂ©valo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt GarcĂ­a Villacorta, Karina Garcia Cabrera, Diego GarcĂ­a Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, EurĂ­dice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy NĂșñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, JosĂ© Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio RĂ­os Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, ĂĂ±igo Granzow-de la Cerda, Manuel MacĂ­a, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf BĂĄnki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel HernĂĄndez, Rafael Herrera FernĂĄndez, Hirma RamĂ­rez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Indicators to assess physiological heat strain – Part 2: Delphi exercise

    No full text
    In a series of three companion papers published in this Journal, we identify and validate the available thermal stress indicators (TSIs). In this second paper of the series, we identified the criteria to consider when adopting a TSI to protect individuals who work in the heat, and we weighed their relative importance using a Delphi exercise with 20 experts. Two Delphi iterations were adequate to reach consensus within the expert panel (Cronbach’s α = 0.86) for a set of 17 criteria with varying weights that should be considered when adopting a TSI to protect individuals who work in the heat. These criteria considered physiological parameters such as core/skin/mean body temperature, heart rate, and hydration status, as well as practicality, cost effectiveness, and health guidance issues. The 17 criteria were distributed across three occupational health-and-safety pillars: (i) contribution to improving occupational health (55% of total importance), (ii) mitigation of worker physiological strain (35.5% of total importance), and (iii) cost-effectiveness (9.5% of total importance). Three criteria [(i) relationship of a TSI with core temperature, (ii) having categories indicating the level of heat stress experienced by workers, and (iii) using its heat stress categories to provide recommendations for occupational safety and health] were considered significantly more important when selecting a TSI for protecting individuals who work in the heat, accumulating 37.2 percentage points. These 17 criteria allow the validation and comparison of TSIs that presently exist as well as those that may be developed in the coming years

    Indicators to assess physiological heat strain – Part 3: Multi-country field evaluation and consensus recommendations

    No full text
    In a series of three companion papers published in this Journal, we identify and validate the available thermal stress indicators (TSIs). In this third paper, we conducted field experiments across nine countries to evaluate the efficacy of 61 meteorology-based TSIs for assessing the physiological strain experienced by individuals working in the heat. We monitored 372 experi-enced and acclimatized workers during 893 full work shifts. We continuously assessed core body temperature, mean skin temperature, and heart rate data together with pre/post urine specific gravity and color. The TSIs were evaluated against 17 published criteria covering physiological parameters, practicality, cost effectiveness, and health guidance issues. Simple meteorological parameters explained only a fraction of the variance in physiological heat strain (R2 = 0.016 to 0.427; p < 0.001), reflecting the importance of adopting more sophisticated TSIs. Nearly all TSIs correlated with mean skin temperature (98%), mean body temperature (97%), and heart rate (92%), while 66% of TSIs correlated with the magnitude of dehydration and 59% correlated with core body temperature (r = 0.031 to 0.602; p < 0.05). When evaluated against the 17 published criteria, the TSIs scored from 4.7 to 55.4% (max score = 100%). The indoor (55.4%) and outdoor (55.1%) Wet-Bulb Globe Temperature and the Universal Thermal Climate Index (51.7%) scored higher compared to other TSIs (4.7 to 42.0%). Therefore, these three TSIs have the highest potential to assess the physiological strain experienced by individuals working in the heat
    corecore