94 research outputs found

    Flexible group cohesion and coordination, but robust leader–follower roles, in a wild social primate using urban space

    Get PDF
    Collective behaviour has a critical influence on group social structure and organization, individual fitness and social evolution, but we know little about whether and how it changes in anthropogenic environments. Here, we show multiple and varying effects of urban space-use upon group-level processes in a primate generalist—the chacma baboon (Papio ursinus)—within a managed wild population living at the urban edge in the City of Cape Town, South Africa. In natural space, we observe baboon-typical patterns of collective behaviour. By contrast, in urban space (where there are increased risks, but increased potential for high-quality food rewards), baboons show extreme flexibility in collective behaviour, with changes in spatial cohesion and association networks, travel speeds and group coordination. However, leader–follower roles remain robust across natural and urban space, with adult males having a disproportionate influence on the movement of group members. Their important role in the group's collective behaviour complements existing research and supports the management tactic employed by field rangers of curbing the movements of adult males, which indirectly deters the majority of the group from urban space. Our findings highlight both flexibility and robustness in collective behaviour when groups are presented with novel resources and heightened risks

    Postpartum cessation of urban space use by a female baboon living at the edge of the City of Cape Town

    Get PDF
    Species with slow life history strategies that invest in few offspring with extended parental care need to adapt their behavior to cope with anthropogenic changes that occur within their lifetime. Here we show that a female chacma baboon (Papio ursinus) that commonly ranges within urban space in the City of Cape Town, South Africa, stops using urban space after giving birth. This change of space use occurs without any significant change in daily distance traveled or social interactions that would be expected with general risk-sensitive behavior after birth. Instead, we suggest this change occurs because of the specific and greater risks the baboons experience within the urban space compared to natural space, and because leaving the troop (to enter urban space) may increase infanticide risk. This case study can inform methods used to manage the baboons' urban space use in Cape Town and provides insight into how life history events alter individuals' use of anthropogenic environments

    Socioecology Explains Individual Variation in Urban Space Use in Response to Management in Cape Chacma Baboons (Papio ursinus)

    Get PDF
    The presence of wildlife adjacent to and within urban spaces is a growing phenomenon globally. When wildlife’s presence in urban spaces has negative impacts for people and wildlife, nonlethal and lethal interventions on animals invariably result. Recent evidence suggests that individuals in wild animal populations vary in both their propensity to use urban space and their response to nonlethal management methods. Understanding such interindividual differences and the drivers of urban space use could help inform management strategies. We use direct observation and high-resolution GPS (1 Hz) to track the space use of 13 adult individuals in a group of chacma baboons (Papio ursinus) living at the urban edge in Cape Town, South Africa. The group is managed by a dedicated team of field rangers, who use aversive conditioning to reduce the time spent by the group in urban spaces. Adult males are larger, more assertive, and more inclined to enter houses, and as such are disproportionately subject to “last resort” lethal management. Field rangers therefore focus efforts on curbing the movements of adult males, which, together with high-ranking females and their offspring, comprise the bulk of the group. However, our results reveal that this focus allows low-ranking, socially peripheral female baboons greater access to urban spaces. We suggest that movement of these females into urban spaces, alone or in small groups, is an adaptive response to management interventions, especially given that they have no natural predators. These results highlight the importance of conducting behavioral studies in conjunction with wildlife management, to ensure effective mitigation techniques

    Polynomial super-gl(n) algebras

    Get PDF
    We introduce a class of finite dimensional nonlinear superalgebras L=L0ˉ+L1ˉL = L_{\bar{0}} + L_{\bar{1}} providing gradings of L0ˉ=gl(n)sl(n)+gl(1)L_{\bar{0}} = gl(n) \simeq sl(n) + gl(1). Odd generators close by anticommutation on polynomials (of degree >1>1) in the gl(n)gl(n) generators. Specifically, we investigate `type I' super-gl(n)gl(n) algebras, having odd generators transforming in a single irreducible representation of gl(n)gl(n) together with its contragredient. Admissible structure constants are discussed in terms of available gl(n)gl(n) couplings, and various special cases and candidate superalgebras are identified and exemplified via concrete oscillator constructions. For the case of the nn-dimensional defining representation, with odd generators Qa,QˉbQ_{a}, \bar{Q}{}^{b}, and even generators Eab{E^{a}}_{b}, a,b=1,...,na,b = 1,...,n, a three parameter family of quadratic super-gl(n)gl(n) algebras (deformations of sl(n/1)sl(n/1)) is defined. In general, additional covariant Serre-type conditions are imposed, in order that the Jacobi identities be fulfilled. For these quadratic super-gl(n)gl(n) algebras, the construction of Kac modules, and conditions for atypicality, are briefly considered. Applications in quantum field theory, including Hamiltonian lattice QCD and space-time supersymmetry, are discussed.Comment: 31 pages, LaTeX, including minor corrections to equation (3) and reference [60

    Dynamics of collective motion across time and species

    Get PDF
    Most studies of collective animal behaviour rely on short-term observations, and comparisons of collective behaviour across different species and contexts are rare. We therefore have a limited understanding of intra- and interspecific variation in collective behaviour over time, which is crucial if we are to understand the ecological and evolutionary processes that shape collective behaviour. Here, we study the collective motion of four species: shoals of stickleback fish (Gasterosteus aculeatus), flocks of homing pigeons (Columba livia), a herd of goats (Capra aegagrus hircus) and a troop of chacma baboons (Papio ursinus). First, we describe how local patterns (inter-neighbour distances and positions), and group patterns (group shape, speed and polarization) during collective motion differ across each system. Based on these, we place data from each species within a ‘swarm space’, affording comparisons and generating predictions about the collective motion across species and contexts. We encourage researchers to add their own data to update the ‘swarm space’ for future comparative work. Second, we investigate intraspecific variation in collective motion over time and provide guidance for researchers on when observations made over different time scales can result in confident inferences regarding species collective motion. This article is part of a discussion meeting issue ‘Collective behaviour through time’

    Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity

    Get PDF
    Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF, IFNγ, IL-1α, and IL-6. Using this assay, we observed drug–cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug–cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1α, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug–cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.Pfizer Inc.Institute for Collaborative BiotechnologiesMIT Center for Cell Decision ProcessesNational Institute of Mental Health (U.S.) (grant P50-GM68762)National Institute of Mental Health (U.S.) (grant T32-GM008334)Massachusetts Institute of Technology. Biotechnology Process Engineering CenterMassachusetts Institute of Technology. Center for Environmental Health SciencesNational Institute of Mental Health (U.S.) (grant U19ES011399)Whitaker Foundatio

    ETS Transcription Factors Control Transcription of EZH2 and Epigenetic Silencing of the Tumor Suppressor Gene Nkx3.1 in Prostate Cancer

    Get PDF
    ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1) and tumor suppressor (i.e., ESE3) properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high), ESE1(high), ESE3(low) and NoETS tumors) were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high) and ESE3(low) tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Comparative Developmental Expression Profiling of Two C. elegans Isolates

    Get PDF
    Gene expression is known to change during development and to vary among genetically diverse strains. Previous studies of temporal patterns of gene expression during C. elegans development were incomplete, and little is known about how these patterns change as a function of genetic background. We used microarrays that comprehensively cover known and predicted worm genes to compare the landscape of genetic variation over developmental time between two isolates of C. elegans. We show that most genes vary in expression during development from egg to young adult, many genes vary in expression between the two isolates, and a subset of these genes exhibit isolate-specific changes during some developmental stages. This subset is strongly enriched for genes with roles in innate immunity. We identify several novel motifs that appear to play a role in regulating gene expression during development, and we propose functional annotations for many previously unannotated genes. These results improve our understanding of gene expression and function during worm development and lay the foundation for linkage studies of the genetic basis of developmental variation in gene expression in this important model organism
    corecore