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ABSTRACT  10 

Collective behaviour has a critical influence on group social structure and 11 

organisation, individual fitness, and social evolution, but we know little about whether 12 

and how it changes in anthropogenic environments. Here, we show multiple and 13 

varying effects of urban space-use upon group-level processes in a primate generalist 14 

– the chacma baboon (Papio ursinus) – within a managed wild population living at the 15 

edge of the city of Cape Town, South Africa. In natural space, we observe baboon-16 

typical patterns of collective behaviour. In contrast, in urban space (where there are 17 

increased risks, but increased potential for high-quality food rewards), baboons show 18 

extreme flexibility in collective behaviour, with changes in spatial cohesion and 19 

association networks, travel speeds, and group coordination. However, leader-20 

follower roles remain robust across natural and urban space, with adult males having 21 

a disproportionate influence on the movement of group members. Their important role 22 

in the group’s collective behaviour complements existing research and supports the 23 

management tactic employed by field rangers of curbing the movements of adult 24 

males, which indirectly deters the majority of the group from urban space. Our findings 25 

highlight both flexibility and robustness in collective behaviour when groups are 26 

presented with novel resources and heightened risks. 27 
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INTRODUCTION 30 

Due to the challenges involved in tracking the behaviours of many individuals simultaneously, 31 

we are only just beginning to understand the collective behaviour of wild social groups [1-3] 32 

and know little about whether and how it changes in anthropogenic environments. This is an 33 

important gap in knowledge given the critical influence collective behaviours exert on group 34 

dynamics, individual fitness, and social evolution [4-6] and the increasing levels of spatial 35 

overlap between wildlife and humans worldwide [7].   36 

Here, we present a detailed field study of whether, and how, collective behaviour changes 37 

for a primate generalist when in urban space. We studied a group of chacma baboons (Papio 38 

ursinus) living at the edge of the City of Cape Town. The group’s home-range includes natural 39 

space within Table Mountain National Park which is dominated by indigenous fynbos 40 

vegetation [8, 9], and urban space comprising residential suburbs. Urban spaces are 41 

established at lower altitudes with more productive soils and hence higher primary 42 

productivity [10] and include access to high-energy anthropogenic food sources [11]. 43 

Together these attractants provide a strong motivation for baboons to urban-forage [12], 44 

which can result in negative interactions between baboons and people [13-16].  45 

The City of Cape Town contracts a private company that deploys field rangers whose 46 

objective is to deter baboons’ from urban space using aversive conditioning [9, 15]. This 47 

management effort reduces the time the baboons spend in urban space [9, 17], but can 48 

contribute to significant within-group variation in behaviour and space-use [9, 13]. For 49 

example, in the group we study here, a combination of management effort and 50 

socioecological factors creates opportunities for individuals and small groups to break away 51 

from the main group and move into urban space more regularly [18]. However, the whole 52 

group does occasionally use urban space together, and these occasions offer the opportunity 53 

to directly compare baboon group coordination and collective behaviour in natural and urban 54 

space. 55 
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Previous research on chacma baboon collective behaviour has shown that individuals have 56 

strong and differentiated associations [19, 20] and high social cohesion [4, 21]. Groups also 57 

show high synchrony in activities [22] and high-ranking socially connected individuals (in 58 

particular adult males) have a large influence on group movement decisions [13, 23-26]. We 59 

therefore expected to see similar patterns of behaviour for our study group when in natural 60 

space but anticipated these patterns would alter when in urban space, for the following 61 

interconnected reasons. 62 

First, urban space presents a fundamentally different resource and risk distribution compared 63 

to natural space [7, 27-30]. This affects individuals differently depending on their phenotype 64 

(e.g. sex and age: [31-33]), with consequences for group-level patterns of behaviour. For 65 

example, changes in resources and risks can prevent individuals from foraging together at 66 

specific locations [27, 34, 35], exaggerating differences in motivation or hunger among 67 

individuals and creating conflicts of interest [7, 36]. Specific to the Cape baboons, field 68 

rangers are also more likely to herd baboons in urban space [9, 12] with a focus on the core 69 

of the group, providing opportunities for more peripheral individuals to use urban space [18]. 70 

Second, urban space is both more noisy and fragmented (e.g., roads, buildings [37-39]) than 71 

natural space, which results in group members becoming visually and acoustically isolated, 72 

increasing inter-neighbour distances [40, 41]. Third, urban space can have reduced predation 73 

pressure (predators often avoid these environments: [42]) and provide opportunistic access 74 

to high-quality human food rewards [7] which can cause increased within-group competition 75 

[43, 44], with implications for group cohesion and stability [45]. Together, these factors can 76 

increase the costs for individuals achieving collective behaviour in urban space [1] forcing 77 

changes in social structure, organisation and functioning of groups [1, 46-48]. We therefore 78 

tested three connected hypotheses with respect to baboon collective behaviour in urban 79 

space using high-resolution GPS collar data for the majority of adults in the group. 80 

We expected the baboons to show decreased social cohesion in urban space compared to 81 

natural space (Hypothesis 1) [46, 48, 49], due to high fission-fusion dynamics [18] along with 82 

a lack of natural predators [50] within the study troop, which we anticipated would heighten 83 

inter-individual conflicts of interest [51]. We predicted the group would be spread over a larger 84 

area when in urban space compared to natural space, resulting in increased modularity (i.e., 85 

greater clustering) of association networks [46]. To test these predictions we examined the 86 

area [52, 53], shape [54, 55], and spread [56-58] of the group when in natural and urban 87 



 4 

space, and built networks describing patterns of spatial associations among individuals [46, 88 

59]. If association networks are interrupted and modular then we expected poorer whole 89 

group coordination [24, 56, 60] in urban space compared to natural space (Hypothesis 2), as 90 

alignment in travel speed and direction would be difficult for individuals to maintain over large 91 

distances (though coordination among local neighbours in clusters’ may be increased). We 92 

therefore predicted more variable group travel speeds, turning angles, and alignment across 93 

all individuals [56, 61-63] in urban space compared to natural space. Finally, we expected 94 

the influence of certain individuals on group members’ movement to be reduced (Hypothesis 95 

3). Specifically, previous studies of chacma baboon groups in this and other populations have 96 

highlighted the importance of adult males in influencing the movement patterns of group-97 

members [13, 23, 25, 26]. Here, we expected male leadership to be reduced in urban space 98 

because of a limited opportunity to influence neighbour behaviour. To test this prediction, we 99 

used an automated procedure that quantifies local leadership events [64]. This is based on 100 

the relative movements of pairs of individuals where a successful “leader” initiates movement 101 

away from, and is followed by, another individual. An aggregation of all leader-follower events 102 

across dyads therefore represents each individual’s relative ‘influence’ over group-member 103 

movement patterns at a defined spatial scale.   104 

METHODS 105 

Study site and subjects 106 

We studied the ‘Da Gama group’, in the City of Cape Town, South Africa. The group 107 

comprised 2 adult males, 19 adult females, and approximately 30 subadults, juveniles and 108 

infants. The group was studied from July to November 2018, and for this study we use data 109 

collected mainly during the austral winter (July - September) when our GPS collars were 110 

active (see GPS data) and when the Peninsula baboons tend to use urban spaces more 111 

frequently [65]. Details on how we defined urban and natural space, and the time baboons 112 

spent within these are provided in the Supplementary Methods. Dominance ranks for all adult 113 

individuals were calculated from direct observations of aggressive interactions 114 

(displacements, chases and aggressive displays), following the clear submission of one 115 

individual, collected ad libitum over 78 days of group follows, as described in previous works 116 

[18, 66] and in the Supplementary Methods. 117 
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GPS data 118 

We fitted n = 16 adult baboons with SHOAL group in-house constructed collars (F2HKv3), 119 

recording GPS positions at 1 fix/second between 08:00 – 20:00 local time (GiPSy 5 tags, 120 

TechnoSmArt, Italy). One collar was not found after automatic release and two collars failed 121 

to record GPS data, resulting in data for n = 13 baboons (Table S1). To test our hypotheses, 122 

we used GPS data collected between 08:00-18:00 local time, when 10 or more collars were 123 

recording. Further details on why these criteria were used, and the accuracy and post-124 

processing of GPS data, are provided in the Supplementary Methods.  125 

Social cohesion (Hypothesis 1) 126 

To test for differences in social cohesion when baboons were in urban and natural space we 127 

calculated 1) convex hull area and perimeter; 2) mean nearest neighbour distance; 3) mean 128 

distance to the group centroid; and 4) group stretch and sphericity, using the package 129 

“swaRm” in R [67]. Convex hull area may be particularly sensitive to missing individuals [68]. 130 

To test for differences in spatial association networks, we extracted two commonly used 131 

metrics: eigenvector centrality and strength [46, 59], calculated based upon baboon 132 

associations in urban and natural space. Association networks were constructed using the 133 

“Spatsoc” package in R [69]. Baboon GPS fixes were grouped spatiotemporally, where 134 

individuals within 5 metres and 1 minute of one another were assumed to be in association 135 

using the “chain rule” [70]. Network edges were weighted using the simple ratio index. We 136 

also used the walktrap community algorithm (“cluster_walktrap”, “igraph” package, R [71]) to 137 

identify clusters of densely-connected individuals in the networks using random walks, where 138 

individuals within a cluster have stronger ties than between clusters [46]. A modularity score, 139 

Q, is given for each cluster. Additionally, to identify the times when the baboons were 140 

commonly within the vicinity of one another (or in discrete groups), we created spatiotemporal 141 

groupings in either area of within 1 minute and 150 m, using the “Spatsoc” package in R [69]. 142 

A spatial threshold of 150 m was chosen as it is larger than common group spread on the 143 

Cape Peninsula [10].  144 

Group coordination (Hypothesis 2) 145 
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To test for differences in group coordination in urban and natural space we calculated 1) 146 

speed of the group centroid; 2) mean linear speed across individuals; 3) standard error in 147 

linear speed; 4) standard error in heading angle and, 5) polarization of the group (alignment 148 

of individuals in direction of travel, going from 0: not aligned to 1: aligned), using the package 149 

“swaRm” in R [67]. We also calculated polarization of identified subgroups (<150m; Fig. S4) 150 

in urban space. 151 

Leadership (Hypothesis 3) 152 

To investigate the influence of certain individuals on group members’ movement we 153 

calculated leader-follower networks by identifying “pulls” between baboon dyads, using 154 

functions as developed in [64] and made available at: http://crofoot.ucdavis.edu. These 155 

functions identify sequences in which one individual (the “leader”) initiates movement away 156 

from another individual (the potential “follower”), who then either joins the first individual (this 157 

would be a successful “pull”) or remains where they are and the leader returns (an 158 

unsuccessful “anchor”), within a predetermined distance threshold (see Fig. 2i). The 159 

“disparity” and “strength” thresholds (outlined in the Supplementary Materials of [64]) were 160 

both set at 0.1, as used in Strandburg-Peshkin et al. [64]. In our main results we present 161 

analyses using 5 m thresholds, as used in [64], but also tested different distance thresholds; 162 

these results are presented in the Supplementary Material. For each distance threshold, we 163 

created N x N matrices (using successful “pulls” in natural and urban space), where “leaders” 164 

are rows and “followers” are columns, with the frequency of dyadic pulls in a cell, for natural 165 

and urban data. We then created directed leader-follower networks using the package 166 

“igraph” in R [71] and extracted directed eigenvector centrality in the network as a measure 167 

of the relative importance of individuals in influencing others movements and leading groups: 168 

a measure used previously in studies investigating leader-follower dynamics [72, 73].  169 

Statistical analyses 170 

To examine differences in collective properties between urban and natural space (see 171 

parameters above), we fitted linear models using generalised least squares (“gls” function in 172 

“nlme” package, R [74]), whilst fitting a temporal autocorrelation structure to account for the 173 

high resolution of the data. Because of the difference in sample sizes between urban and 174 

natural space (natural dataset was 48x larger than urban dataset; see Supplementary 175 
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Methods), we bootstrapped all models with 48 repetitions, randomly sampling from the 176 

natural dataset for the number of minutes recorded in the urban dataset. We extracted model 177 

coefficients at each iteration, averaged each coefficient (across iterations) and calculated 178 

95% confidence intervals for the bootstrapped data. We log-transformed (using the natural 179 

log) the following variables to meet normality criteria: convex hull area, convex hull perimeter, 180 

mean nearest neighbour distance, mean distance to the group centroid, speed of the group 181 

centroid, and mean linear speed, which was assessed using graphical procedures (Q-Q plots 182 

and standardised residuals vs. predicted values).  183 

To examine differences between urban and natural space in association and leader-follower 184 

networks, we used linear mixed models (“lmer” function in “lme4” package, R [75]) and fitted 185 

network strength (association networks) and eigenvector centrality (both association and 186 

leader-follower networks) as response variables. We fitted individual baboon ID as a random 187 

effect, and standardised dominance rank as a fixed effect to control respectively for repeated 188 

values of individual and the effect of dominance rank (which is strongly correlated with 189 

association network metrics in natural space: [18], and leader-follower network metrics in 190 

both settings: Fig. 2h). Best-performing models were selected by Akaike Information Criteria 191 

(AIC). Model fit was checked using graphical procedures (Q-Q plot and standardised 192 

residuals vs. predicted values). Matrix correlations (Spearman’s rank) were also conducted 193 

to test if dyadic associations/interactions were similar in natural and urban space. 194 

RESULTS  195 

Social cohesion (Hypothesis 1) 196 

Baboons were farther apart from one another in urban compared to natural space (nearest 197 

neighbour distance: urban: 30.47 ± 1.21 m, natural: 11.96 ± 0.21 m (hereafter median ± SE), 198 

p < 0.001; Table 1; Fig. 1a) resulting in greater average distance to the group centroid (urban: 199 

129.15 ± 3.63 m, natural: 36.11 ± 1.47 m, p < 0.001; Table 1), and increased group spread 200 

when in urban space (convex hull area: urban: 38379.36 ± 2511.88 m², natural: 3733.90 ± 201 

233.68 m², p < 0.001; convex hull perimeter: urban: 947.26 ± 23.57 m, natural: 282.95 ± 7.74 202 

m, p < 0.001; Table 1; Fig. 1c). In urban space baboons were rarely all found within 150m of 203 

each other (Fig. 1b) and were often in dispersed subgroups (Fig. 1d, Video S1). In contrast, 204 

in natural space baboons were often found within 150m of each other and rarely in dispersed 205 
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subgroups (Fig. 1be, Video S1). Moreover, where small subgroups or single individuals were 206 

identified within 150m in natural space, this was likely due to baboons travelling alone or in 207 

small groups in and out of urban space (Fig. S2). The group split into a maximum of 5 208 

subgroups at any one time point in urban space (Fig. S4). Despite differences in group 209 

cohesion, group shape did not differ between urban and natural space, with the group having 210 

similar “sphericity” (i.e. closer to circle shape) (urban: 0.449 ± 0.010, natural: 0.382 ± 0.001, 211 

p = 0.098; Table 1), and “stretch” (urban: -0.344 ± 0.049, natural: -0.308 ± 0.007, p = 0.698; 212 

Table 1) in both spaces. Full model outputs are provided in Table 1.   213 
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Table 1: Results of a nonparametric bootstrap (48 iterations) of a generalised least squares 214 

model for the effect of space (urban, natural) on each of eleven collective parameters of a 215 

baboon group living on the urban edge in Cape Town, South Africa. Estimates, t-values, and 216 

p-values are the mean average taken across bootstrap iterations. 95% confidence intervals 217 

indicate the 95% distribution of the estimates, and standard errors represent the error around 218 

the estimates. “Log” indicates the natural log scale. With the exception of “stretch”, positive 219 

estimates indicate a parameter increase in urban space and negative estimates indicate a 220 

parameter decrease in urban space. “Stretch” decreases in urban space despite a positive 221 

estimate. 222 

Model  Estimate SE t p 95% CI 

Social cohesion parameters       

Convex hull area (log) 2.295 0.015 17.262 < 0.001 2.108 2.481 

Convex hull perimeter (log) 1.085 0.008 15.042 < 0.001 0.986 1.191 

Mean nearest neighbour distance 

(log) 

0.846 0.007 8.481 < 0.001 0.773 0.937 

Mean distance to group centroid 

(log) 

1.083 0.007 14.132 < 0.001 0.972 1.192 

Sphericity 0.046 0.001 1.886 0.098 0.019 0.070 

Stretch 0.036 0.006 0.316 0.698 -0.039 0.118 

Group coordination parameters       

Speed of group centroid (log) 0.426 0.132 3.636 0.005 0.252 0.588 

Mean speed (log) 0.655 0.007 7.712 < 0.001 0.567 0.746 

Standard error in speed (log) 0.796 0.007 9.195 < 0.001 0.720 0.913 

Standard error in heading 0.035 0.001 3.152 0.009 0.020 0.049 

Polarization -0.124 0.001 -6.353 < 0.001 -0.146 -0.108 
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 223 

Figure 1. Reduced baboon group cohesion in urban compared to natural space. (a) 224 

Frequency density plot for mean inter-baboon distances (natural log scale); (b) Frequency 225 

density plot for number of baboons observed within 150m of each other; (c) Frequency 226 

density plot for baboon group convex hull perimeter (natural log scale). In (a)-(c), data are 227 

shown for baboons in natural (green) and urban (grey) space. (d) and (e) show satellite 228 

images of baboons in a suburb of Cape Town, and in the natural space surrounding this 229 

suburb, respectively. Baboon locations (identified by coloured dots) are overlaid, and white 230 

circles of 150m diameter (as shown in (b)) illustrate differences in group cohesion at these 231 

example moments. 232 

Spatial association networks differed between urban and natural space (Fig. 2ac) with the 233 

network in urban displaying lower density and higher modularity (density = 0.718; Q = 0.429) 234 

compared to the network in natural (density = 1; Q = 0.118), reflecting lower cohesion in 235 

urban space (Fig. 1) where baboons are further apart (Fig. 1ac) and more frequently in 236 

subgroups (Fig. 1bd). These network differences result in different individual-level network 237 

statistics. Individuals’ association network strength was significantly lower in urban space 238 

(median: 0.108, range: 0.048 – 0.245) compared to natural space (median: 0.339, range: 239 

0.228 – 0.545) (GLMM: estimate ± SE = -0.214 ± 0.023, p < 0.001). Whilst individual 240 

eigenvector centrality scores for the association network were similar in both urban and 241 

natural space (GLMM: estimate ± SE = -0.055 ± 0.080, p = 0.504), the positive correlation 242 

between eigenvector centrality and dominance rank was absent in urban space (Spearman’s 243 

rank correlation: natural: rho = 0.481, p = 0.096; urban: rho = 0.160, p = 0.603). Additionally, 244 

dyadic relationships present in natural space were retained in urban space (Spearman’s rank 245 

correlation: rho = 0.445, p < 0.001). 246 

Coordination (Hypothesis 2) 247 

The speed of the group centroid was higher in urban space compared to natural space 248 

(urban: 0.08 ± 0.01 m/s, natural: 0.05 ± 0.00 m/s (hereafter median ± SE), p = 0.005; Table 249 

1). The group mean speed was also higher in urban space compared to natural space (urban: 250 

0.16 ± 0.01 m/s, natural: 0.09 ± 0.00 m/s, p < 0.001; Table 1), and was more variable (urban: 251 

0.07 ± 0.00, natural: 0.03 ± 0.00, p < 0.001; Table 1). Variation in baboons’ headings was 252 
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greater in urban space compared to natural space (urban: 0.533 ± 0.006, natural: 0.505 ± 253 

0.001, p = 0.009; Table 1) resulting in reduced polarization in urban space (urban: 0.290 ± 254 

0.010, natural: 0.401 ± 0.002, p < 0.001; Table 1). The positive relationship between 255 

polarization and speed – where polarization increases when the group travels quickly towards 256 

a shared destination – was present in urban and natural space (Fig. S3ab) but this 257 

relationship was weaker in urban space (mean speed*urban space: estimate ± SE = -0.837 258 

± 0.108, t = -7.751, p < 0.001; Fig. S3a). Similarly, polarization increased with increasing 259 

standard error in speed (Fig. S3cd), but this relationship was weaker in urban space (standard 260 

error in speed*urban space: estimate ± SE = -2.631 ± 0.502, t = -5.204, p < 0.001; Fig. S3c). 261 

Finally, the increasing number of subgroups in urban space had no effect on whole group 262 

polarization (gls: estimate = -0.002, p = 0.867), though polarization within subgroups was 263 

greater than whole group polarization (Fig. S4). This was attributed to greater coordination 264 

between dyads (Fig. S5 & Fig. S6), rather than an artefact of calculating polarization over 265 

fewer individuals. 266 

  267 
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Figure 2. Interrupted networks in urban space, but retention of leader-follower roles. 268 

(a) Baboon association network (undirected) and (b) leader-follower network (directed) in 269 

natural space; (c) Baboon association network (undirected) and (d) leadership network 270 

(directed) in urban space; In (a)-(d) high to low eigenvector centrality is represented by large 271 

to small circle sizes, and high to low dominance rank from dark to light colours. (e) 272 

Relationship (not statistically significant) between association network eigenvector centrality 273 

(undirected) for baboons when in natural and urban space; (f) Relationship (statistically 274 

significant) between leadership network eigenvector centrality (directed) for baboons when 275 

in natural and urban space; (g) Trend for higher dominance-ranked baboons being more 276 

central in the association network (undirected) in natural space, but not in urban space; (h) 277 

Higher-ranked baboons are more central in the leadership network (directed) in both urban 278 

and natural space; (i) Five baboons: the orange baboon is the blue baboon’s closest spatial 279 

neighbour, within a 5m radius (shown by the light blue circle). If two baboons are often 280 

observed within 5m of each other they will have a strong link in (a) and (c). If the blue baboon 281 

(initiator) moves >5m away from a group member who then follows by >5m (orange baboon, 282 

follower), then this is considered a local leadership event, where one baboon influences the 283 

movement of another. Baboons with greatest influence on others’ movements will have high 284 

eigenvector centrality in (b) and (d).  285 

Leadership (Hypothesis 3) 286 

Leader-follower networks differed between urban and natural space (Fig. 2bd) with the 287 

network in urban displaying a lower density (density = 0.942) than the network in natural 288 

(density = 1). Leadership eigenvector centrality was significantly correlated with dominance 289 

rank in natural space (Spearman’s rank correlation: rho = 0.666, p = 0.013, n = 13; Fig. 2h), 290 

and this relationship was maintained in urban space (Spearman’s rank correlation: rho = 291 

0.792, p = 0.001, n = 13; Fig. 2h). Leadership eigenvector centrality scores were significantly 292 

lower in urban space (median: 0.621, range: 0.194 – 1.000) compared to natural space 293 

(median: 0.860, range: 0.448 – 1.000) (GLMM: estimate ± SE = -0.167 ± 0.031, p < 0.001). 294 

Leader-follower dyads that frequently interacted in natural space also interacted in urban 295 

space (Spearman’s rank correlation: rho = 0.788, p < 0.001). 296 

DISCUSSION 297 
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We provide evidence that chacma baboon social cohesion and coordination breaks down in 298 

urban space. Although the collared individuals of the Da Gama group only spend 2% of their 299 

daytime as a group in the urban space, their social behaviour is significantly altered when 300 

compared with their behaviour in natural space. In particular, the group was more spread out, 301 

less cohesive, with a higher clustering into subgroups when in urban space. The group also 302 

attained higher speeds, had a greater error in heading, and were less polarized in urban 303 

space. These findings therefore support our first two hypotheses regarding association 304 

networks being interrupted and interactions among individuals being constrained. However, 305 

we found only partial support for our third hypothesis regarding the disruption of leadership 306 

roles: though leader-follower networks were interrupted in urban space, dominance related 307 

leader-follower roles were retained. We discuss each of our findings in turn.  308 

Baboon social cohesion and association networks were significantly reduced in urban space, 309 

supporting our first hypothesis. This finding is in line with recent research examining the 310 

influence of human proximity on social and spatial relationships in moor macaques [46], 311 

where groups are less cohesive, and individual social relationships constrained, when near 312 

to humans. Urban environments are heterogenous and unpredictable [76], with patchy food 313 

sources and high levels of contact with humans (in our group, this includes both residents 314 

and rangers). Previous research indicates that when there is high spatial variability in the 315 

environment (for example in food patches or predation risks), there is a greater scope for 316 

inter-individual conflicts of interest, and groups are predicted to fission into subgroups of 317 

individuals with similar requirements [13, 60]. It is likely that this is what we are seeing for the 318 

Da Gama group: conflicts in motivation between individuals when in the urban space cause 319 

a splitting of the group into subgroups and, with a lack of natural predators, this is preferential 320 

to social cohesion [7]. Indeed, we found greater inter-baboon distances, greater individual 321 

distances to the group centre, and a larger group spread in the urban space, as well as a 322 

retention of spatial associations and leader-follower interactions at the dyadic level in urban 323 

space. Moreover, the spread of the group in urban space had an uneven distribution. 324 

Individuals were often seen in dispersed subgroups, which translated into sparser urban 325 

spatial networks (network “strength” was significantly reduced in urban space) with a higher 326 

cluster modularity score than natural spatial networks. This is further evidenced by the multi-327 

modal distribution of urban inter-individual distances, which has recently been used to 328 

determine “units” in multi-level societies [77], and here represents a greater clustering of 329 

individuals in urban space.  330 
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Baboon group coordination was disrupted because of fragmentation of the collective structure 331 

in urban space, providing support for our second hypothesis. The group was observed 332 

travelling at higher speeds and group members were more variable in their speed and 333 

heading, resulting in a less polarized group in urban as opposed to natural space. Since the 334 

group is spread out and clustered into subgroups in the urban space, it follows that travel 335 

direction and speed are highly variable across individuals. Previous research on the Cape 336 

baboons has found that, when using urban space, adult males adopt a “sit and wait strategy”, 337 

spending a lot of time close to the urban edge and then making high-activity forays into urban 338 

space [11]. High speed in urban space is presumably indicative of high risk, and is likely the 339 

result of individuals quickly monopolising patchy high caloric food sources and subsequently 340 

being exposed to risks from residents, dogs, rangers, etc. Indeed, the relationship between 341 

speed and polarization (as group speed increases, so does group polarization: [78]), was 342 

significantly reduced in comparison to natural space (Fig. S3ab). This indicates that 343 

individuals are less polarized in travel direction whilst travelling at high speeds in urban space 344 

compared to natural space. This is likely due to group fragmentation in the urban space; here, 345 

within-subgroup polarization was greater than whole group polarization (Fig. S4), indicating 346 

that while subgroups align in collective motion, whole group alignment is reduced. 347 

Polarization also increased with increasing error in speed in natural space (Fig. S3d) and this 348 

relationship was reduced in urban space (Fig. S3c); higher values of standard error in speed 349 

were associated with lower values of polarization more commonly than in natural space. 350 

Together these results may be indicative of subgroups aligning in travel direction when 351 

moving off independently of one another – resulting in low whole group coordination in 352 

movement.  353 

In the case of our third hypothesis, we found that, though leader-follower networks were 354 

interrupted, and leadership eigenvector centrality was significantly reduced in urban space, 355 

leadership roles as predicted by dominance rank remained stable. This finding therefore 356 

offers partial support for our final hypothesis. The retention of dominance-related leadership 357 

in urban space – where the group tended to be fragmented and poorly coordinated – is 358 

surprising but highlights the importance of high-ranked individuals upon the movement 359 

patterns of group members, which is seen throughout the species range. Indeed, in other 360 

populations, dominant individuals (namely, high-ranking adult males) have a strong influence 361 

on group movement, and therefore collective movement decisions [13, 23, 25, 26, 72, 79]. 362 



 15 

However, because our study troop has just two adult males, they may be afforded more 363 

opportunity to elicit followers. 364 

High-ranking individuals are more successful than other group members at making 365 

movement initiations across both natural and urban space. Movement initiations are 366 

extracted regardless of inter-individual distance within a dyad (see Methods), which means 367 

that even if the group is fragmented and poorly coordinated, fine-scale movement is still 368 

captured. In this way, we see that leadership is robust to other social changes seen in urban 369 

space; or, put another way, leader-follower dynamics are density independent [5, 51, 60].  370 

However, using different spatial criteria for identifying leadership “pulls” did reveal that in 371 

urban space, the greater influence on group movements by dominant individuals is present 372 

for movement initiations at up to 20m, whereas in natural space they only occur for 373 

movements of up to 5m (Table S3). This shows that group members tend to follow high-374 

ranking individuals in urban space at a more global scale. In both cases group members are 375 

responding to initiations, but in urban space, other individuals tend to be further away (mean 376 

nearest-neighbour distances are more than doubled in urban space, and baboons tend to 377 

only have a few neighbours even at distances of 20m: Fig. S8).  378 

Our finding that this chacma baboon group exhibits leader-follower dynamics structured by 379 

dominance rank differs to the findings in olive baboons (Papio anubis), where dominant 380 

individuals do not strongly influence group movement decisions  [64]. However, it is important 381 

to note that we use the leader-follower data in a different way to the Strandburg-Peshkin et 382 

al. [64] study. There, the authors took the leader-follower information and used this to explore 383 

collective movement decisions when baboons were faced with different options regarding 384 

where to travel. Here, we examined an individual’s influence on other baboons’ behaviour by 385 

creating leader-follower networks based upon pulls across the whole dataset. It would 386 

therefore be informative to compare both datasets at different scales (i.e., different threshold 387 

distances with shorter or longer lag times between movement) and for different types of 388 

movement events, to examine how collective movement is shaped by differences in context 389 

or species.  390 

Together, our results demonstrate how chacma baboons in the Cape Peninsula have 391 

adapted to exploit urban space, adopting lower group cohesion and smaller group sizes, 392 

which we expect reduces competition for high-quality, patchy food resources [27] and 393 
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increases their chance of evading rangers who attempt to deter them from urban space (pers. 394 

obs.). The current work therefore provides further evidence of how social flexibility allows 395 

animals to cope with accelerated human-induced changes to their environment [27, 46], and 396 

provides a basis for understanding these responses in other species. Future work could 397 

further examine leader-follower dynamics in wildlife groups inhabiting urban space, 398 

identifying when key decisions are made, how and when groups split and reform [80]. 399 

Alongside this, a more in-depth investigation into inter-individual differences in movement in 400 

urban environments may uncover how predictable individuals are when using these 401 

landscapes [81].  402 
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