93 research outputs found

    Determination of the basic timescale in kinetic Monte Carlo simulations by comparison with cyclic-voltammetry experiments

    Full text link
    While kinetic Monte Carlo simulations can provide long-time simulations of the dynamics of physical and chemical systems, it is not yet possible in general to identify the inverse Monte Carlo attempt frequency with a physical timescale. Here we demonstrate such an identification by comparing simulations with experimental data. Using a dynamic lattice-gas model for the electrosorption of Br on Ag(100), we measure the scan-rate dependence of the separation between positive-and negative-going peaks in cyclic-voltammetry (CV) and compare simulated and experimental peak separations. By adjusting the Monte Carlo attempt frequency, good agreement between simulated and experimental peak separations is achieved. It is also found that the uniqueness of such a determination is dependent on the relative values of the adsorption/desorption and diffusion free-energy barriers.Comment: Accepted for publication in Surface Science Letters,8 pages, 4 figure

    Penguins leaving the pole: bound-state effects in B decaying to K* + photon

    Full text link
    Applying perturbative QCD methods recently seen to give a good description of the two body hadronic decays of the B meson, we address the question of bound-state effects on the decay B into K* + gamma. Consistent with most analyses, we demonstrate that gluonic penguins, with photonic bremsstrahlung off a quark, change the decay rate by only a few percent. However, explicit off-shell b-quark effects normally discarded are found to be large in amplitude, although in the standard model accidents of phase minimize the effect on the rate. Using an asymptotic distribution amplitude for the K* and just the standard model, we can obtain a branching ratio of a few times 10^{-5}, consistent with the observed rate.Comment: 12 pages. U. of MD PP \#94-129; DOE/ER/40762-033; WM-94-104. LaTeX, One figure, available by fax or pos

    Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism

    Get PDF
    Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio

    Airborne quantification of net methane and carbon dioxide fluxes from European Arctic wetlands in Summer 2019

    Get PDF
    Arctic wetlands and surrounding ecosystems are both a significant source of methane (CH4) and a sink of carbon dioxide (CO2) during summer months. However, precise quantification of this regional CH4 source and CO2 sink remains poorly characterized. A research flight using the UK Facility for Airborne Atmospheric Measurement was conducted in July 2019 over an area (approx. 78 000 km2) of mixed peatland and forest in northern Sweden and Finland. Area-averaged fluxes of CH4 and carbon dioxide were calculated using an aircraft mass balance approach. Net CH4 fluxes normalized to wetland area ranged between 5.93 ± 1.87 mg m−2 h−1 and 4.44 ± 0.64 mg m−2 h−1 (largest to smallest) over the region with a meridional gradient across three discrete areas enclosed by the flight survey. From largest to smallest, net CO2 sinks ranged between −513 ± 74 mg m−2 h−1 and −284 ± 89 mg m−2 h−1 and result from net uptake of CO2 by vegetation and soils in the biosphere. A clear gradient of decreasing bulk and area-averaged CH4 flux was identified from north to south across the study region, correlated with decreasing peat bog land area from north to south identified from CORINE land cover classifications. While N2O mole fraction was measured, no discernible gradient was measured over the flight track, but a minimum flux threshold using this mass balance method was calculated. Bulk (total area) CH4 fluxes determined via mass balance were compared with area-weighted upscaled chamber fluxes from the same study area and were found to agree well within measurement uncertainty. The mass balance CH4 fluxes were found to be significantly higher than the CH4 fluxes reported by many land-surface process models compiled as part of the Global Carbon Project. There was high variability in both flux distribution and magnitude between the individual models. This further supports previous studies that suggest that land-surface models are currently ill-equipped to accurately capture carbon fluxes inthe region

    LHS 2803B: A very wide mid-T dwarf companion to an old M dwarf identified from Pan-STARRS1

    Get PDF
    We report the discovery of a wide (1400 AU projected separation), common proper motion companion to the nearby M dwarf LHS 2803 (PSO J207.0300-13.7422). This object was discovered during our census of the local T dwarf population using Pan-STARRS1 and Two Micron All Sky Survey data. Using the Infrared Telescope Facility/SpeX near-infrared spectroscopy, we classify the secondary to be spectral type T5.5. University of Hawaii 2.2m/SuperNova Integral Field Spectrograph optical spectroscopy indicates that the primary has a spectral type of M4.5, with approximately solar metallicity and no measurable Hα emission. We use this lack of activity to set a lower age limit for the system of 3.5Gyr. Using a comparison with chance alignments of brown dwarfs and nearby stars, we conclude that the two objects are unlikely to be a chance association. The primary's photometric distance of 21pc and its proper motion implies thin disk kinematics. Based on these kinematics and its metallicity, we set an upper age limit for the system of 10Gyr. Evolutionary model calculations suggest that the secondary has a mass of 72±47 MJup, temperature of 1120 ± 80K, and log g = 5.4 ± 0.1dex. Model atmosphere fitting to the near-IR spectrum gives similar physical parameters of 1100K and log g = 5.0

    Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays

    Get PDF
    Bose-Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative agreement with the string fragmentation model

    Form factors in lattice QCD

    Full text link
    Lattice simulations of QCD have produced precise estimates for the masses of the lowest-lying hadrons which show excellent agreement with experiment. By contrast, lattice results for the vector and axial vector form factors of the nucleon show significant deviations from their experimental determination. We present results from our ongoing project to compute a variety of form factors with control over all systematic uncertainties. In the case of the pion electromagnetic form factor we employ partially twisted boundary conditions to extract the pion charge radius directly from the linear slope of the form factor near vanishing momentum transfer. In the nucleon sector we focus specifically on the possible contamination from contributions of higher excited states. We argue that summed correlation functions offer the possibility of eliminating this source of systematic error. As an illustration of the method we discuss our results for the axial charge, gA, of the nucleon.Comment: 16 pages, 11 figures, presented at Conclusive Symposium, CRC443, "Many-body structure of strongly interacting systems", 23-25 Feb 2011, Mainz, German

    Measurement of the Branching Ratio B(D+ --> rho^0 l nu)/B(D+ --> K*0 l nu)

    Get PDF
    We report a measurement of the branching ratio B(D+-->rho^0 l nu)/ B(D+-->K*0 l nu) from the Fermilab charm hadroproduction experiment E791. Based on signals of 49+-17 events in the D+--> rho^0 e nu mode and 54+-18 events in the D+--> rho^0 mu nu mode, we measure B(D+-->rho^0 e nu)/B(D+-->K*0 e nu) = 0.045+-0.014+-0.009, and B(D+-->rho^0 mu nu)/B(D+-->K*0 mu nu) = 0.051+-0.015+-0.009. Combining the results from both the electronic and muonic modes, we obtain B(D+-->rho^0 l nu)/B(D+-->K*0 l nu) = 0.047+-0.013. This result is compared to theoretical predictions.Comment: 15 pages, Latex, including two figures, submitted to Physics Letters

    KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS

    Get PDF
    We present the discoveries of KELT-25 b (TIC 65412605, TOI-626.01) and KELT-26 b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A stars. The transit signals were initially detected by the KELT survey and subsequently confirmed by Transiting Exoplanet Survey Satellite (TESS) photometry. KELT-25 b is on a 4.40 day orbit around the V = 9.66 star CD-24 5016 (Teff=8280-180+440 K, M ∗ = 2.18-0.11+0.12 M o˙), while KELT-26 b is on a 3.34 day orbit around the V = 9.95 star HD 134004 (Teff = 8640-240+500 K, M ∗ = 1.93-0.16+0.14 M o˙), which is likely an Am star. We have confirmed the substellar nature of both companions through detailed characterization of each system using ground-based and TESS photometry, radial velocity measurements, Doppler tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of R P = 1.64-0.043+0.039 R J and a 3σ upper limit on the companion's mass of ∌64 M J. For KELT-26 b, we infer a planetary mass and radius of M P = 1.41-0.51+0.43MJ and R P = 1.94-0.058+0.060 R J. From Doppler tomographic observations, we find KELT-26 b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the TESS data. KELT-25 b appears to be in a well-aligned, prograde orbit, and the system is likely a member of the cluster Theia 449
    • 

    corecore