326 research outputs found

    Primary production in subsidized green-brown food webs

    Get PDF
    Ecosystems worldwide receive large amounts of nutrients from both natural processes and human activities. While direct subsidy effects on primary production are relatively well-known (the green food web), the indirect effects of subsidies on producers as mediated by the brown food web and predators are poorly considered. With a dynamical green-brown food web model, parameterized using empirical estimates from the literature, we illustrate the effect of organic and inorganic nutrient subsidies on net primary production (NPP) (i.e., after removing loss to herbivory) in two idealized ecosystems—one terrestrial and one aquatic. We find that nutrient subsidies increase net primary production, an effect that saturates with increasing subsidies. Changing the quality of subsidies from inorganic to organic tends to increase net primary production in terrestrial ecosystems, but less often so in aquatic ecosystems. This occurs when organic nutrient inputs promote detritivores in the brown food web, and hence predators that in turn regulate herbivores, thereby promoting primary production. This previously largely overlooked effect is further enhanced by ecosystem properties such as fast decomposition and low rates of nutrient additions and demonstrates the importance of nutrient subsidy quality on ecosystem functioning

    Crop rotations sustain cereal yields under a changing climate

    Get PDF
    Agriculture is facing the complex challenge of satisfying increasing food demands, despite the current and projected negative impacts of climate change on yields. Increasing crop diversity at a national scale has been suggested as an adaptive measure to better cope with negative climate impacts such as increasing temperatures and drought, but there is little evidence to support this hypothesis at the field scale. Using seven long-term experiments across a wide latitudinal gradient in Europe, we showed that growing multiple crop species in a rotation always provided higher yields for both winter and spring cereals (average +860 and +390 kg ha−1 per year, respectively) compared with a continuous monoculture. In particular, yield gains in diverse rotations were higher in years with high temperatures and scant precipitations, i.e. conditions expected to become more frequent in the future, rendering up to c. 1000 kg ha−1 per year compared to monocultures. Winter cereals yielded more in diverse rotations immediately after initiation of the experiment and kept this advantage constant over time. For spring cereals, the yield gain increased over time since diversification adoption, arriving to a yearly surplus of c. 500 kg ha−1 after 50-60 years with still no sign of plateauing. Diversified rotations emerge as a promising way to adapt temperate cropping systems and contribute to food security under a changing climate. However, novel policies need to be implemented and investments made to give means and opportunities for farmers to adopt diversified crop rotations

    Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats

    Get PDF
    In agricultural landscapes, arthropods provide essential ecosystem services such as biological pest control and pollination. Intensified crop management practices and homogenization of landscapes have led to declines among such organisms. Semi-natural habitats, associated with high numbers of these organisms, are increasingly lost from agricultural landscapes but diversification by increasing crop diversity has been proposed as a way to reverse observed arthropod declines and thus restore ecosystem services. However, whether or not an increase in the diversity of crop types within a landscape promotes diversity and abundances of pollinating and predaceous arthropods, and how semi-natural habitats might modify this relationship, are not well understood. To test how crop diversity and the proportion of semi-natural habitats within a landscape are related to the diversity and abundance of beneficial arthropod communities, we collected primary data from seven studies focusing on natural enemies (carabids and spiders) and pollinators (bees and hoverflies) from 154 crop fields in Southern Sweden between 2007 and 2017. Crop diversity within a 1-km radius around each field was positively related to the Shannon diversity index of carabid and pollinator communities in landscapes rich in semi-natural habitats. Abundances were mainly affected by the proportion of semi-natural habitats in the landscape, with decreasing carabid and increasing pollinator numbers as the proportion of this habitat type increased. Spiders showed no response to either crop diversity or the proportion of semi-natural habitats. Synthesis and applications. We show that the joint effort of preserving semi-natural habitats and promoting crop diversity in agricultural landscapes is necessary to enhance communities of natural enemies and pollinators. Our results suggest that increasing the diversity of crop types can contribute to the conservation of service-providing arthropod communities, particularly if the diversification of crops targets complex landscapes with a high proportion of semi-natural habitats

    Effects of habitat composition and landscape structure on worker foraging distances of five bumblebee species

    Get PDF
    Bumblebees (Bombus spp.) are important pollinators of both crops and wild flowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumblebees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics and fine resolution remote sensing to estimate the locations of wild bumblebee nests and to infer foraging distances across a 20 km2 agricultural landscape in southern England. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius and B. ruderatus exhibited significantly greater mean foraging distances (551 m, 536 m, 501 m, respectively) than B. hortorum and B. pascuorum (336 m, 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants. Our findings suggest that favourable landscape composition and configuration has the potential to minimise foraging distances across a range of bumblebee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumblebees and enhancing crop pollination services

    Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

    Get PDF
    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change
    corecore