161 research outputs found

    Research and development of hierarchical models of automated control systems for the parameters of the radio-line of the cognitive radio system

    Get PDF
    The paper considers a five-level model of a cognitive radio communication system. It was revealed that 1 - it was established that the value of the influence of natural factors and the effects of the enemy is comparable, but several times less than the state of the radio communication system; 2 - the observer's device and the regulator are important for the effective transmission of information and the controlled process and the internal state of the information transmission system are less important; 3 - the goal of reducing the number of errors in the transmission of information and increasing the speed of information transmission are important for the effective transmission of information, in comparison with a reduction in the computational load on the formation of signal-code structures and a decrease in the amount of energy used for transmission; 4 - the highest efficiency of the radio system can be achieved through the use of optimal signal processing algorithms, and high power of the transmitted signal; 5 - increasing the speed of information transmission without the necessary power of the radio link and signal processing algorithms will not give a tangible effect when transmitting information in difficult conditions

    Winter soil respiration in a humid temperate forest: The roles of moisture, temperature, and snowpack

    Get PDF
    Winter soil respiration at midlatitudes can comprise a substantial portion of annual ecosystem carbon loss. However, winter soil carbon dynamics in these areas, which are often characterized by shallow snow cover, are poorly understood due to infrequent sampling at the soil surface. Our objectives were to continuously measure winter CO2 flux from soils and the overlying snowpack while also monitoring drivers of winter soil respiration in a humid temperate forest. We show that the relative roles of soil temperature and moisture in driving winter CO2 flux differed within a single soil-to-snow profile. Surface soil temperatures had a strong, positive influence on CO2 flux from the snowpack, while soil moisture exerted a negative control on soil CO2 flux within the soil profile. Rapid fluctuations in snow depth throughout the winter likely created the dynamic soil temperature and moisture conditions that drove divergent patterns in soil respiration at different depths. Such dynamic conditions differ from many previous studies of winter soil microclimate and respiration, where soil temperature and moisture are relatively stable until snowmelt. The differential response of soil respiration to temperature and moisture across depths was also a unique finding as previous work has not simultaneously quantified CO2 flux from soils and the snowpack. The complex interplay we observed among snow depth, soil temperature, soil moisture, and CO2 flux suggests that winter soil respiration in areas with shallow seasonal snow cover is more variable than previously understood and may fluctuate considerably in the future given winter climate change

    Thermal adaptation of soil microbial respiration to elevated temperature

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Ecology Letters 11 (2008): 1316-1327, doi:10.1111/j.1461-0248.2008.01251.x.In the short-term heterotrophic soil respiration is strongly and positively related to temperature. In the long-term its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short-lived. The explanations proposed for this ephemeral response include depletion of fast-cycling, soil carbon pools and thermal adaptation of microbial respiration. Using a >15 year soil warming experiment in a mid-latitude forest, we show that the apparent ‘acclimation’ of soil respiration at the ecosystem scale results from combined effects of reductions in soil carbon pools and microbial biomass, and thermal adaptation of microbial respiration. Mass specific respiration rates were lower when seasonal temperatures were higher, suggesting that rate reductions under experimental warming likely occurred through temperature-induced changes in the microbial community. Our results imply that stimulatory effects of global temperature rise on soil respiration rates may be lower than currently predicted.This research was supported by the Office of Science (BER), U.S. Department of Energy and the Andrew W. Mellon Foundation

    Delamination technique together with longitudinal incisions for treatment of Chiari I/syringomyelia complex: a prospective clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment modalities in Chiari malformation type 1(CMI) accompanied by syringomyelia have not yet been standardized. Pathologies such as a small posterior fossa and thickened dura mater have been discussed previously. Various techniques have been explored to enlarge the foramen magnum and to expand the dura. The aim of this clinical study was to explore a new technique of excision of the external dura accompanied by widening the cisterna magna and making longitudinal incisions in the internal dura, without disturbing the arachnoid.</p> <p>Methods</p> <p>Ten patients with CMI and syringomyelia, operated between 2004 and 2006, formed this prospective series. All cases underwent foramen magnum decompression of 3 × 3 cm area with C1–C2 (partial) laminectomy, resection of foramen magnum fibrous band, excision of external dura, delamination and widening of internal dura with longitudinal incisions.</p> <p>Results</p> <p>Patients were aged between 25 and 58 years and occipital headache was the most common complaint. The mean duration of preoperative symptoms was 4 years and the follow-up time was 25 months. Clinical progression was halted for all patients; eight patients completely recovered and two reported no change. In one patient, there was a transient cerebrospinal fluid (CSF) fistula that was treated with tissue adhesive. While syringomyelia persisted radiologically with radiological stability in five patients; for three patients the syringomyelic cavity decreased in size, and for the remaining two it regressed completely.</p> <p>Conclusion</p> <p>Removal of the fibrous band and the outer dural layer, at level of foramen magnum, together with the incision of inner dural layer appears to be good technique in adult CMI patients. The advantages are short operation time, no need for duraplasty, sufficient posterior fossa decompression, absence of CSF fistulas as a result of extra arachnoidal surgery, and short duration of hospitalization. Hence this surgical technique has advantages compared to other techniques.</p

    Protecting tropical forests from the rapid expansion of rubber using carbon payments

    Get PDF
    Expansion of Hevea brasiliensis rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity loss in Southeast Asia. Southeast Asian rubber extent is massive, equivalent to 67% of oil palm, with rapid further expansion predicted. Results-based carbon finance could dis-incentivise forest conversion to rubber, but efficacy will be limited unless payments match, or at least approach, the costs of avoided deforestation. These include opportunity costs (timber and rubber profits), plus carbon finance scheme setup (transaction) and implementation costs. Using comprehensive Cambodian forest data, exploring scenarios of selective logging and conversion, and assuming land-use choice is based on net present value, we find that carbon prices of 3030-51 per tCO2are needed to break even against costs, higher than those currently paid on carbon markets or through carbon funds. To defend forests from rubber, either carbon prices must be increased, or other strategies are needed, such as corporate zero-deforestation pledges, and governmental regulation and enforcement of forest protection

    Microbial Maintenance: A Critical Review on Its Quantification

    Get PDF
    Microbial maintenance is an important concept in microbiology. Its quantification, however, is a subject of continuous debate, which seems to be caused by (1) its definition, which includes nongrowth components other than maintenance; (2) the existence of partly overlapping concepts; (3) the evolution of variables as constants; and (4) the neglect of cell death in microbial dynamics. The two historically most important parameters describing maintenance, the specific maintenance rate and the maintenance coefficient, are based on partly different nongrowth components. There is thus no constant relation between these parameters and previous equations on this subject are wrong. In addition, the partial overlap between these parameters does not allow the use of a simple combination of these parameters. This also applies for combinations of a threshold concentration with one of the other estimates of maintenance. Maintenance estimates should ideally explicitly describe each nongrowth component. A conceptual model is introduced that describes their relative importance and reconciles the various concepts and definitions. The sensitivity of maintenance on underlying components was analyzed and indicated that overall maintenance depends nonlinearly on relative death rates, relative growth rates, growth yield, and endogenous metabolism. This quantitative sensitivity analysis explains the felt need to develop growth-dependent adaptations of existing maintenance parameters, and indicates the importance of distinguishing the various nongrowth components. Future experiments should verify the sensitivity of maintenance components under cellular and environmental conditions

    Biophysical landscape interactions: bridging disciplines and scale with connectivity

    Get PDF
    Landscape composition and land use impact the interactions between soil and vegetation. Differences in micro-behaviour, driven by the interplay of heterogeneous soil and vegetation dynamics, affect emergent characteristics across a landscape. Scaling approaches to understand the drivers of these emergent characteristics have been attempted, but the blueprint of interacting biophysical processes in landscapes is inherently messy and often still unknown. A complicating factor is single disciplinary focus in environmental sciences. Integrated knowledge is vital especially in view of future challenges posed by climate change, population growth, and soil threats. In this paper, we give examples of biophysical interactions that occur across various temporal and spatial scales and discuss how connectivity can be useful for bridging disciplines and scales to increase our understanding
    corecore