28 research outputs found

    The T2K ND280 Off-Axis Pi-Zero Detector

    Full text link
    The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the P{\O}D is to measure the relevant cross sections for neutrino interactions that generate pi-zero's, especially the cross section for neutral current pi-zero interactions, which are one of the dominant sources of background to the electron neutrino appearance signal in T2K. The P{\O}D is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Neural similarity at temporal lobe and cerebellum predicts out-of-sample preference and recall for video stimuli

    Get PDF
    Contains fulltext : 203498.pdf (publisher's version ) (Open Access)The extent to which brains respond similarly to a specific stimulus, across a small group of individuals, has been previously found to predict out-of-sample aggregate preference for that stimulus. However, the location in the brain where neural similarity predicts out-of-sample preference remains unclear. In this article, we attempt to identify the neural substrates in three functional magnetic resonance imaging (fMRI) studies. Two fMRI studies (N = 40 and 20), using previously broadcasted TV commercials, show that spatiotemporal neural similarity at temporal lobe and cerebellum predict out-of-sample preference and recall. A follow-up fMRI study (N = 28) with previously unseen movie-trailers replicated the predictive effect of neural similarity. Moreover, neural similarity provided unique information on out-of-sample preference above and beyond in-sample preference. Overall, the findings suggest that neural similarity at temporal lobe and cerebellum – traditionally associated with sensory integration and emotional processing – may reflect the level of engagement with video stimuli

    Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by 13C-NMR and IR spectroscopy

    No full text
    Soil organic matter (SOM) content is themajor soil component affecting pesticide sorption. However,recent studies have highlighted the fact that it is notthe total carbon content of the organic matter, but itschemical structure which have a profound effect on thepesticide’s sorption. In the present study, sorption ofatrazine and metsulfuron-methyl herbicides was studiedin four SOM fractions viz. commercial humic acid,commercial lignin, as well as humic acid and huminextracted from a compost. Sorption data was fitted to theFreundlich adsorption equation. In general, theFreundlich slope (1/n) values for both the herbicideswere <1. Except for atrazine sorption on commercialhumic acid, metsulfuron-methyl was more sorbed. Desorptionresults suggested that atrazine was moredesorbed than metsulfuron-methyl. Lignin, whichshowed least sorption of both the herbicides, showedminimum desorption. Sorption of atrazine was bestpositively correlated with the alkyl carbon (adjustedR2 = 0.748) and carbonyl carbon (adjusted R2 = 0.498)but, their effect was statistically nonsignificant(P = 0.05). Metsulfuron-methyl sorption showed bestpositive correlation with carbonyl carbon (adjustedR2 = 0.960; P = 0.05) content. Sorption of both theherbicides showed negative correlation with O/N-alkylcarbon. Correlation of herbicide’s sorption with alkyland carbonyl carbon content of SOM fractions suggestedtheir contribution towards herbicide sorption.But, sorption of metsulfuron-methyl, relatively morepolar than atrazine, was mainly governed by the polargroups in SOM. IR spectra showed that H-bonds andcharge-transfer bonds between SOM fraction and herbicidesprobably operated as mechanisms of adsorption

    The T2K experiment

    Get PDF
    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13 by observing νe appearance in a νμ beam. It also aims to make a precision measurement of the known oscillation parameters, and sin22θ23, via νμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem
    corecore