133 research outputs found

    Properties of dust in the high-latitude translucent cloud L1780 I: Spatially distinct dust populations and increased dust emissivity from ISO observations

    Full text link
    We have analyzed the properties of dust in the high galactic latitude translucent cloud Lynds 1780 using ISOPHOT maps at 100 and 200 micrometers and raster scans at 60, 80, 100, 120, 150 and 200 micrometers. In far-infrared (FIR) emission, the cloud has a single core that coincides with the maxima of visual extinction and 200um optical depth. At the resolution of 3.0 arcmin, the maximum visual extinction is 4.0 mag. At the cloud core, the minimum temperature and the maximum 200um optical depth are 14.9+/-0.4 K and 2.0+/-0.2x10^{-3}, respectively, at the resolution of 1.5 arcmin. The cloud mass is estimated to be 18M_{SUN}. The FIR observations, combined with IRAS observations, suggest the presence of different, spatially distinct dust grain populations in the cloud: the FIR core region is the realm of the "classical" large grains, whereas the very small grains and the PAHs have separate maxima on the Eastern side of the cold core, towards the "tail" of this cometary-shaped cloud. The color ratios indicate an overabundance of PAHs and VSGs in L1780. Our FIR observations combined with the optical extinction data indicate an increase of the emissivity of the big grain dust component in the cold core, suggesting grain coagulation or some other change in the properties of the large grains. Based on our observations, we also address the question, to what extent the 80um emission and even the 100um and the 120um emission contain a contribution from the small-grain component.Comment: 12 pages, 9 figures, minor changes, one table adde

    The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud

    Get PDF
    Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium

    Evolution of Chemistry and Molecular Line Profile during Protostellar Collapse

    Full text link
    Understanding the chemical evolution in star-forming cores is a necessary pre-condition to correctly assess physical conditions when using molecular emission. We follow the evolution of chemistry and molecular line profiles through the entire star formation process, including a self-consistent treatment of dynamics, dust continuum radiative transfer, gas energetics, chemistry, molecular excitation, and line radiative transfer. In particular, the chemical code follows a gas parcel as it falls toward the center, passing through regimes of density, dust temperature, and gas temperature that are changing both because of the motion of the parcel and the evolving luminosity of the central source. We combine a sequence of Bonnor-Ebert spheres and the inside-out collapse model to describe dynamics from the pre-protostellar stage to later stages. The overall structures of abundance profiles show complex behavior that can be understood as interactions between freeze-out and evaporation of molecules. We find that the presence or absence of gas-phase CO has a tremendous effect on the less abundant species. In addition, the ambient radiation field and the grain properties have important effects on the chemical evolution, and the variations in abundance have strong effects on the predicted emission line profiles. Multi-transition and multi-position ob servations are necessary to constrain the parameters and interpret observations correctly in terms of physical conditions. Good spatial and spectral resolution is also important in distinguishing evolutionary stages.Comment: 41 pages, 26 figures, accepted for publication in Ap

    Retinoid Induces the Degradation of Corneodesmosomes and Downregulation of Corneodesmosomal Cadherins: Implications on the Mechanism of Retinoid-induced Desquamation

    Get PDF
    Background: Topical retinoids induce skin fragility. As corneodesmosomes are important adhesion structures in the epidermal cohesion, an effect of retinoids on corneodesmosomes has been suspected. Objective: The aim of this study was to investigate the effect of retinoid on the expression of corneodesmosomal components including desmoglein (DSG) 1, desmocollin (DSC) 1, corneodesmosin (CDSN) and kallikrein (KLK)s. Methods: 2 % all-trans-retinol or ethanol was applied to the back of hairless mice for five days, and the structure of the stratum corneum was examined by transmission electron microscopy. The cultured human keratinocytes were treated with all-trans-retinoic acid (RA) in low or high calcium media for 24 hours. Results: Topical retinol increased corneocyte detachment and degradation of corneodesmosomes. RA significantly decreased DSG1 and DSC1 expression at the mRNA and protein levels in keratinocytes that were cultured in both low- and high-calcium media. On the other hand, CDSN mRNA levels did not decrease in low-calcium media or increase in high-calcium media after RA treatment. KLK5 and KLK7 expression did not increase after RA treatment. Conclusion: Our results indicat

    The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud

    Get PDF
    Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC). Methods: The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models

    Exceptional AGN-driven turbulence inhibits star formation in the 3C 326N radio galaxy

    Get PDF
    We detect bright [CII]158μm line emission from the radio galaxy 3C 326N at z=0.09, which shows weak star formation (SFR⊙~yr−1) despite having strong H2 line emission and 2×109M⊙ of molecular gas. The [CII] line is twice as strong as the 0-0S(1) 17μm H2 line, and both lines are much in excess what is expected from UV heating. We combine infrared Spitzer and Herschel data with gas and dust modeling to infer the gas physical conditions. The [CII] line traces 30 to 50% of the molecular gas mass, which is warm (70−3. The [CII] line is broad with a blue-shifted wing, and likely to be shaped by a combination of rotation, outflowing gas, and turbulence. It matches the near-infrared H2 and the Na D optical absorption lines. If the wing is interpreted as an outflow, the mass loss rate would be larger than 20M⊙/yr, and the depletion timescale shorter than the orbital timescale (108yr). These outflow rates may be over-estimated because the stochastic injection of turbulence on galactic scales can contribute to the skewness of the line profile and mimic outflowing gas. We argue that the dissipation of turbulence is the main heating process of this gas. Cosmic rays can also contribute to the heating but they require an average gas density larger than the observational constraints. We show that strong turbulent support maintains a high gas vertical scale height (0.3-4kpc) in the disk and can inhibit the formation of gravitationally-bound structures at all scales, offering a natural explanation for the weakness of star formation in 3C 326N. To conclude, the bright [CII] line indicates that strong AGN jet-driven turbulence may play a key role in enhancing the amount of molecular gas (positive feedback) but yet can prevent star formation on galactic scales (negative feedback)

    ISO observations of 3 - 200 micron emission by three dust populations in an isolated local translucent cloud

    Full text link
    We present ISOPHOT spectrophotometry of three positions within the isolated high latitude cirrus cloud G 300.2 - 16.8, spanning from the near- to far-infrared. The positions exhibit contrasting emission spectrum contributions from the UIBs, very small grains and large classical grains, and both semi-empirical and numerical models are presented. At all three positions, the UIB spectrum shapes are found to be similar, and the large grain emission may be fitted by an equilibrium temperature of ~17.5 K. The energy requirements of both the observed emission spectrum and optical scattered light are shown to be satisfied by the incident local ISRF. The FIR emissivity of dust in G 300.2 - 16.8 is found to be lower than in globules or dense clouds, and is even lower than model predictions for dust in the diffuse ISM. The results suggest physical differences in the ISM mixtures between positions within the cloud, possibly arising from grain coagulation processes.Comment: 22 pages, 8 tables, 11 figures (figure 8 is in colour). Landscape table included as separate LaTeX file. Accepted for publication in MNRA

    Selective C-Rel Activation via Malt1 Controls Anti-Fungal TH-17 Immunity by Dectin-1 and Dectin-2

    Get PDF
    C-type lectins dectin-1 and dectin-2 on dendritic cells elicit protective immunity against fungal infections through induction of TH1 and TH-17 cellular responses. Fungal recognition by dectin-1 on human dendritic cells engages the CARD9-Bcl10-Malt1 module to activate NF-κB. Here we demonstrate that Malt1 recruitment is pivotal to TH-17 immunity by selective activation of NF-κB subunit c-Rel, which induces expression of TH-17-polarizing cytokines IL-1β and IL-23p19. Malt1 inhibition abrogates c-Rel activation and TH-17 immunity to Candida species. We found that Malt1-mediated activation of c-Rel is similarly essential to induction of TH-17-polarizing cytokines by dectin-2. Whereas dectin-1 activates all NF-κB subunits, dectin-2 selectively activates c-Rel, signifying a specialized TH-17-enhancing function for dectin-2 in anti-fungal immunity by human dendritic cells. Thus, dectin-1 and dectin-2 control adaptive TH-17 immunity to fungi via Malt1-dependent activation of c-Rel
    corecore