908 research outputs found

    Cerebrospinal fluid protein carbonylation identifies oxidative damage in autoimmune demyelination

    Full text link
    Oxidative damage occurs in multiple sclerosis, but is difficult to identify antemortem and remains an unknown contributor to disease progression. Carbonylation is a quantitative measure of protein oxidation. Cerebrospinal fluid samples from multiple sclerosis patients showed elevated carbonylated protein levels compared to controls. In experimental autoimmune encephalomyelitis, carbonylated protein levels in cerebrospinal fluid correlated tightly with those found in inflamed spinal cord tissues. Furthermore, concentrations in cerebrospinal fluid and spinal cord responded in parallel to an antioxidant intervention that also attenuated disease symptoms. These data suggest that carbonylated cerebrospinal fluid proteins could be a quantitative, sensitive, and disease‐relevant biomarker in multiple sclerosis.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136295/1/acn3379_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136295/2/acn3379.pd

    Intersection between metabolic dysfunction, high fat diet consumption, and brain aging

    Get PDF
    Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high‐fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high‐fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age‐related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.Fil: Uranga, Romina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Bruce Keller, Annadora J.. State University of Louisiana; Estados UnidosFil: Morrison, Christopher D.. State University of Louisiana; Estados UnidosFil: Fernandez Kim, Sun Ok. State University of Louisiana; Estados UnidosFil: Ebenezer, Philip J.. State University of Louisiana; Estados UnidosFil: Zhang, Le. State University of Louisiana; Estados UnidosFil: Dasuri, Kalavathi. State University of Louisiana; Estados UnidosFil: Keller, Jeffrey N.. State University of Louisiana; Estados Unido

    Over-pressurized bioreactors : application to microbial cell cultures

    Get PDF
    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028," cofunded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. A special aknowledgement is given to FCT for the support to the improvement of infrastructures awarded by the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462)

    Over-pressurized bioreactors : application to microbial cell cultures

    Get PDF
    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028," cofunded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. A special aknowledgement is given to FCT for the support to the improvement of infrastructures awarded by the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462)

    Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance

    Get PDF
    In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection

    Firefly Luciferase and Rluc8 Exhibit Differential Sensitivity to Oxidative Stress in Apoptotic Cells

    Get PDF
    Over the past decade, firefly Luciferase (fLuc) has been used in a wide range of biological assays, providing insight into gene regulation, protein-protein interactions, cell proliferation, and cell migration. However, it has also been well established that fLuc activity can be highly sensitive to its surrounding environment. In this study, we found that when various cancer cell lines (HeLa, MCF-7, and 293T) stably expressing fLuc were treated with staurosporine (STS), there was a rapid loss in bioluminescence. In contrast, a stable variant of Renilla luciferase (RLuc), RLuc8, exhibited significantly prolonged functionality under the same conditions. To identify the specific underlying mechanism(s) responsible for the disparate sensitivity of RLuc8 and fLuc to cellular stress, we conducted a series of inhibition studies that targeted known intracellular protein degradation/modification pathways associated with cell death. Interestingly, these studies suggested that reactive oxygen species, particularly hydrogen peroxide (H2O2), was responsible for the diminution of fLuc activity. Consistent with these findings, the direct application of H2O2 to HeLa cells also led to a reduction in fLuc bioluminescence, while H2O2 scavengers stabilized fLuc activity. Comparatively, RLuc8 was far less sensitive to ROS. These observations suggest that fLuc activity can be substantially altered in studies where ROS levels become elevated and can potentially lead to ambiguous or misleading findings

    Energy Reallocation to Breeding Performance through Improved Nest Building in Laboratory Mice.

    Get PDF
    Mice are housed at temperatures (20-26°C) that increase their basal metabolic rates and impose high energy demands to maintain core temperatures. Therefore, energy must be reallocated from other biological processes to increase heat production to offset heat loss. Supplying laboratory mice with nesting material may provide sufficient insulation to reduce heat loss and improve both feed conversion and breeding performance. Naïve C57BL/6, BALB/c, and CD-1breeding pairs were provided with bedding alone, or bedding supplemented with either 8g of Enviro-Dri, 8g of Nestlets, for 6 months. Mice provided with either nesting material built more dome-like nests than controls. Nesting material improved feed efficiency per pup weaned as well as pup weaning weight. The breeding index (pups weaned/dam/week) was higher when either nesting material was provided. Thus, the sparing of energy for thermoregulation of mice given additional nesting material may have been responsible for the improved breeding and growth of offspring

    Rules Governing Selective Protein Carbonylation

    Get PDF
    BACKGROUND:Carbonyl derivatives are mainly formed by direct metal-catalysed oxidation (MCO) attacks on the amino-acid side chains of proline, arginine, lysine and threonine residues. For reasons unknown, only some proteins are prone to carbonylation. METHODOLOGY/PRINCIPAL FINDINGS:we used mass spectrometry analysis to identify carbonylated sites in: BSA that had undergone in vitro MCO, and 23 carbonylated proteins in Escherichia coli. The presence of a carbonylated site rendered the neighbouring carbonylatable site more prone to carbonylation. Most carbonylated sites were present within hot spots of carbonylation. These observations led us to suggest rules for identifying sites more prone to carbonylation. We used these rules to design an in silico model (available at http://www.lcb.cnrs-mrs.fr/CSPD/), allowing an effective and accurate prediction of sites and of proteins more prone to carbonylation in the E. coli proteome. CONCLUSIONS/SIGNIFICANCE:We observed that proteins evolve to either selectively maintain or lose predicted hot spots of carbonylation depending on their biological function. As our predictive model also allows efficient detection of carbonylated proteins in Bacillus subtilis, we believe that our model may be extended to direct MCO attacks in all organisms

    Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants.</p> <p>Results</p> <p>Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the C<sub>α</sub>-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH α-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The C<sub>α</sub>-C<sub>β </sub>bond of the alkoxyl alanine peptide radical is more labile than the peptide bond.</p> <p>Conclusion</p> <p>the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO<sub>2</sub>. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO<sub>2 </sub>are crucial in this O-base oxidation reaction.</p
    corecore