1,436 research outputs found

    Synthesis and Characterization of Iron(II) Complexes Modeling the Active Site Structure of Nonheme Iron Dioxygenases

    Get PDF
    The aerobic degradation of polycyclic aromatic compounds, which are widespread contaminants in soils and groundwaters, is carried-out in large part by various Fe-containing dioxygenases that perform the cis-dihydroxylation and oxidative cleavage of aromatic rings. Recently, a new Fe dioxygenase family emerged that catalyzes a remarkable set of transformations; the distinguishing feature of these enzymes is that their monoiron(II) centers are coordinated by three histidines residues (i.e., imidazole ligands) in a facial geometry - a departure from the canonical 2-histidine-1-carboxylate facial triad that is dominant among nonheme monoiron enzymes. Members of the 3His family are capable of oxidatively cleaving C-C bonds in substrates that are generally resistant to degradation, including β-diketones and monohydroxylated aromatics (e.g., salicylic acid). This thesis describes the design, synthesis, and characterization of novel transition-metal complexes with polyimidazole ligands that serve as faithful structural and functional models of these important metalloenzymes. Specifically, high-spin iron(II) β-diketonato complexes were synthesized with the PhTIP (tris(2-phenylimidazol-4-yl)phosphine), and tBuTIP ((tris-2-tert-butylimidazol-4-yl)phosphine) ligands. The complexes were analyzed with a combination of experimental and computational methods including X-ray crystallography, cyclic voltammetry, UV-vis absorption, 1H nuclear magnetic resonance, and density functional theory (DFT). The resulting geometric- and electronic-structure descriptions were compared with those obtained for analagous models with the anionic Me2Tp (hydrotris(3,5-dimethylpyrazol-1-yl)borate) and Ph2Tp (hydrotris(3,5-diphenylpyrazol-1-yl)borate) ligands. A similar biomimetic approach was employed in the synthesis and characterization of models of the enzyme salicylate 1,2-dioxygenase

    Synthesis and Structural Characterization of Iron(II) Complexes with Tris(imidazolyl)phosphane Ligands: A Platform for Modeling the 3-Histidine Facial Triad of Nonheme Iron Dioxygenases

    Get PDF
    Several monoiron(II) complexes containing tris(imidazolyl)phosphane (TIP) ligands have been prepared and structurally characterized by using X-ray crystallography and NMR spectroscopy. Two TIP ligands were employed: tris(2-phenylimidazol-4-yl)phosphane (4-TIPPh) and tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphane (2-TIPPh2). These tridentate ligands resemble the 3-histidine (3His) facial triad found recently in the active sites of certain nonheme iron dioxygenases. Three of the reported complexes are designed to serve as convenient precursors to species that model the enzyme–substrate intermediates of 3His dioxygenases; thus, each contains an [Fe(κ3-TIP)]2+ unit in which the remaining coordination sites are occupied by easily displaced ligands, such as solvent molecules and/or carboxylate groups. The viability of these complexes as precursors was demonstrated through the synthesis of TIP-based complexes with β-diketonate and salicylate ligands that represent faithful models of β-diketone dioxygenase and salicylate 1,2-dioxygenase, respectively

    Fe(II) Complexes That Mimic the Active Site Structure of Acetylacetone Dioxygenase: O\u3csub\u3e2\u3c/sub\u3e and NO Reactivity

    Get PDF
    Acetylacetone dioxygenase (Dke1) is a bacterial enzyme that catalyzes the dioxygen-dependent degradation of β-dicarbonyl compounds. The Dke1 active site contains a nonheme monoiron(II) center facially ligated by three histidine residues (the 3His triad); coordination of the substrate in a bidentate manner provides a five-coordinate site for O2 binding. Recently, we published the synthesis and characterization of a series of ferrous β-diketonato complexes that faithfully mimic the enzyme–substrate intermediate of Dke1 (Park, H.; Baus, J.S.; Lindeman, S.V.; Fiedler, A.T. Inorg. Chem.2011, 50, 11978–11989). The 3His triad was modeled with three different facially coordinating N3 supporting ligands, and substituted β-diketonates (acacX) with varying steric and electronic properties were employed. Here, we describe the reactivity of our Dke1 models toward O2 and its surrogate nitric oxide (NO), and report the synthesis of three new Fe(II) complexes featuring the anions of dialkyl malonates. Exposure of [Fe(Me2Tp)(acacX)] complexes (where R2Tp = hydrotris(pyrazol-1-yl)borate with R-groups at the 3- and 5-positions of the pyrazole rings) to O2 at −70 °C in toluene results in irreversible formation of green chromophores (λmax ∼750 nm) that decay at temperatures above −60 °C. Spectroscopic and computational analyses suggest that these intermediates contain a diiron(III) unit bridged by a trans μ-1,2-peroxo ligand. The green chromophore is not observed with analogous complexes featuring Ph2Tp and PhTIP ligands (where PhTIP = tris(2-phenylimidazoly-4-yl)phosphine), since the steric bulk of the phenyl substituents prevents formation of dinuclear species. While these complexes are largely inert toward O2, Ph2Tp-based complexes with dialkyl malonate anions exhibit dioxygenase activity and thus serve as functional Dke1 models. The Fe/acacX complexes all react readily with NO to yield high-spin (S = 3/2) {FeNO}7 adducts that were characterized with crystallographic, spectroscopic, and computational methods. Collectively, the results presented here enhance our understanding of the chemical factors involved in the oxidation of aliphatic substrates by nonheme iron dioxygenases

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass
    corecore