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Abstract 
Several monoiron(II) complexes containing tris(imidazolyl)phosphane (TIP) ligands have been prepared 
and structurally characterized by using X‐ray crystallography and NMR spectroscopy. Two TIP ligands 
were employed: tris(2‐phenylimidazol‐4‐yl)phosphane (4‐TIPPh) and tris(4,5‐diphenyl‐1‐methylimidazol‐
2‐yl)phosphane (2‐TIPPh2). These tridentate ligands resemble the 3‐histidine (3His) facial triad found 
recently in the active sites of certain nonheme iron dioxygenases. Three of the reported complexes are 
designed to serve as convenient precursors to species that model the enzyme–substrate intermediates 
of 3His dioxygenases; thus, each contains an [Fe(κ3‐TIP)]2+ unit in which the remaining coordination 
sites are occupied by easily displaced ligands, such as solvent molecules and/or carboxylate groups. 
The viability of these complexes as precursors was demonstrated through the synthesis of TIP‐based 
complexes with β‐diketonate and salicylate ligands that represent faithful models of β‐diketone 
dioxygenase and salicylate 1,2‐dioxygenase, respectively. 

Abstract 
A series of monoiron(II) complexes with tris(imidazolyl)phosphane ligands have been generated and 
characterized by using X‐ray crystallography. These complexes model the resting and substrate‐bound 
states of certain nonheme iron enzymes, such as β‐diketone dioxygenase and salicylate 1,2‐
dioxygenase, which employ three facially coordinating histidine ligands in their active sites. 

 

Introduction 
Mononuclear nonheme iron dioxygenases play a central role in the oxidative catabolism of a wide 
range of biomolecules and pollutants.1 Members of this enzyme family include the extradiol catechol 
dioxygenases,2 Rieske dioxygenases,3 homogentisate dioxygenase,4 and (chloro)hydroquinone 
dioxygenases.5 These enzymes feature a common active‐site motif in which the ferrous center is 
facially ligated by one aspartate (or glutamate) and two histidine residues [the so‐called 2‐His‐1‐
carboxylate (2H1C) facial triad].6 However, recent structural studies have shown that the Asp/Glu 
ligand in some monoiron dioxygenases is replaced with His, resulting in the 3His facial triad.7 Members 
of this “3His family” catalyze novel transformations that have expanded the known boundaries of Fe 
dioxygenase chemistry. For example, cysteine dioxygenase (CDO)8 – the first 3His enzyme to be 
structurally characterized – catalyzes the initial step in L‐cysteine catabolism by converting the thiol 
into a sulfinic acid (Scheme 1), while β‐diketone dioxygenase (Dke1) oxidizes acetylacetone to acetic 
acid and 2‐oxopropanal.9 Other 3His Fe dioxygenases include gentisate 1,2‐dioxygenase (GDO)10 and 
salicylate 1,2‐dioxygenase (SDO),11 both of which oxidatively cleave aromatic C–C bonds (Scheme 1). 
Each of these microbial enzymes participates in the degradation pathways of polycyclic aromatic 
hydrocarbons. While the reaction catalyzed by GDO is very similar to those catalyzed by the extradiol 
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catechol dioxygenases and likely follows a similar mechanism, SDO is unique in performing the 
oxidative cleavage of an aromatic ring with only one electron‐donating group. 

 

Scheme 1 

Our knowledge of nonheme Fe dioxygenases has greatly benefitted from the development of small‐
molecule analogues that replicate important structural, spectroscopic, and/or functional properties of 
the enzyme active sites.12 The 2H1C triad has been suitably modeled with anionic, tridentate 
supporting ligands such as tris(pyrazol‐1‐yl)borates (Tp),13 bis(pyrazolyl)acetates,14 and bis(1‐
alkylimidazol‐2‐yl)propionates.15 The last two ligand sets replicate the mixed N2O donor set of the 
2H1C triad by the inclusion of carboxylate arms. Given the unique and significant reactions catalyzed by 
the 3His family of Fe dioxygenases, it is important to develop supporting ligands with specific relevance 
to the 3His facial triad. To this end, we have sought to exploit the tris(imidazol‐2‐yl)phosphane (2‐TIPR2) 
and tris(imidazol‐4‐yl)phosphane (4‐TIPR) frameworks shown in Scheme 2, which accurately mimic the 
charge and donor strength of the 3His coordination environment. These ligands were initially 
generated to model the 3His ligand sets found in the active sites of carbonic anhydrase (Zn2+) and 
cytochrome c oxidase (Cu2+).16 To date, the application of the TIP framework to Fe systems has been 
limited to homoleptic [Fe(TIP)2]2+/3+ complexes17 and carboxylate‐bridged diiron(III) species.17c,18 

 

Scheme 2 
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A key advantage of the 2‐TIPR2 and 4‐TIPR ligands is that their steric properties can be easily modified 
by altering the R substituent(s). Thus far, we have primarily employed the 2‐TIPPh2 and 4‐TIPPh ligands, 
as the steric bulk of the phenyl rings discourages both dimerization and formation of the homoleptic 
[Fe(TIP)2]2+ complexes. Recently, we described the synthesis and structural characterization of a series 
of [Fe2+(4‐TIPPh)(acacX)]OTf complexes (acacX = substituted β‐diketonate; OTf = triflate) that serve as 
models of the Dke1 enzyme–substrate complex.19 These models were prepared by directly mixing one 
equivalent of the sodium salt of the appropriate β‐diketone, Na(acacX), with equimolar amounts of 
Fe(OTf)2 and 4‐TIPPh in MeOH. This “one‐pot” approach, however, is not successful for various 
combinations of supporting and “substrate” ligands. Thus, as described in this article, we have 
generated several Fe2+ complexes with κ3‐TIP ligands that also contain displaceable ligands (such as 
solvent, triflate, benzoate, and acetate) bound to the opposite face of the octahedron. These 
complexes resemble the resting states of 3His Fe dioxygenases, which feature two or three cis‐labile 
H2O molecules.20 In addition, it is shown that these TIP‐based complexes serve as excellent precursors 
for the formation of monoiron complexes with three facial imidazole donors and various bound 
substrates, including β‐diketonates and salicylates (mimics of Dke1 and SDO, respectively). Thus, the 
chemistry described here establishes a valuable platform for future synthetic modeling studies of 
nonheme Fe dioxygenases with the 3His facial triad. 

Results and Discussion 
Fe2+ Complexes Containing 2‐TIPPh2 
The novel 2‐TIPPh2 ligand was synthesized by means of lithiation of 4,5‐diphenyl‐1‐methylimidazole at 
the 2‐position at –78 °C, followed by addition of PCl3 (0.33 equiv.). Reaction of 2‐TIPPh2 with Fe(OTf)2 in 
MeCN provided the complex [1](OTf)2 in 60 % yield (Scheme 3). Crystals suitable for X‐ray diffraction 
(XRD) analysis were obtained by layering a concentrated MeCN solution with diethyl ether. The 
structure features two symmetrically independent [1]2+ units with nearly identical metric parameters 
(Table 1; details concerning the data collection and analysis of all X‐ray structures are summarized in 
Table 4). As shown in Figure 1, the six‐coordinate (6C) Fe2+ center is ligated by 2‐TIPPh2 and three MeCN 
ligands in a distorted octahedral geometry. As expected, the 2‐TIPPh2 ligand coordinates in a facial 
manner. The average Fe–N distance of 2.19 Å is indicative of a high‐spin Fe2+ center (S = 2), consistent 
with the measured magnetic moment of 5.2 μB. The triflate counteranions are not bound to the metal 
centers, and the asymmetric unit also contains one equivalent of noncoordinated Et2O. 
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Scheme 3 

Table 1. Selected metric parameters for [Fe2+(LN3)(MeCN)3]2+ complexes. Bond lengths in Å and angles 
in degrees. 

 
[1](OTf)2·0.5Et2O[a] [Fe(trisoxtBu)(MeCN)3]2+ [Fe(tpmPh2)(MeCN)3]2+   

(ref.22)[b] (ref.21)[c] 
Fe1–N2 2.186(1) 2.257(2) 2.199(2) 
Fe1–N4 2.177(1) 2.205(2) 2.196(2) 
Fe1–N6 2.182(1) 2.215(2) 2.205(3) 
Fe1–N7 2.196(1) 2.163(2) 2.131(3) 
Fe1–N8 2.179(1) 2.131(2) 2.166(2) 
Fe1–N9 2.205(1) 2.171(3) 2.156(3) 
Fe–NTIP (av.) 2.181 2.226 2.200 
Fe–Nsolv (av.) 2.193 2.155 2.151     
N2–Fe1–N4 88.87(5) 84.62(6) 84.40(9) 
N2–Fe1–N6 91.43(5) 82.12(6) 85.84(9) 
N4–Fe1–N6 88.32(5) 86.89(7) 83.27(9) 
N7–Fe1–N8 85.48(5) 90.25(8) 87.6(1) 
N7–Fe1–N9 82.06(5) 91.33(8) 86.4(1) 
N8–Fe1–N9 83.23(5) 86.00(8) 90.3(1) 

[a] Average values for the two independent, but chemically equivalent [1]+ cations. 
[b] trisoxtBu = 1,1,1‐tris(4‐tert‐butyloxazolin‐2‐yl)ethane. 
[c] tpmPh2 = tris(3,5‐diphenylpyrazol‐1‐yl)methane. 

 

Figure 1 

Thermal ellipsoid plot (50 % probability) of [1](OTf)2·0.5Et2O. Only one of the symmetrically 
inequivalent [1](OTf)2 units is shown. Hydrogen atoms, counteranions, and noncoordinating solvent 
molecules have been omitted for clarity. 

Two related high‐spin Fe2+ structures with [Fe(LN3)(MeCN)3]2+ compositions have been reported in the 
literature, and their metric parameters are also provided in Table 1. The average Fe–NTIP distance of 
2.18 Å in [1]2+ is significantly shorter than the distances observed forthe analogous tris(3,5‐
diphenylpyrazol‐1‐yl)methane (tpmPh2)21 and 1,1,1‐tris(4‐tert‐butyloxazolin‐2‐yl)ethane 
(trisoxtBu)22 complexes, which display average Fe–N distances of 2.20 and 2.23 Å, respectively. 
Conversely, the average Fe–NMeCN distance in [1]2+ is approximately 0.04 Å longer than those reported 
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for the tpmPh2 and trisoxtBu complexes. Both facts suggest that 2‐TIPPh2 is a somewhat stronger donor 
than other neutral N3 ligands that have appeared in the literature. 

Elemental analysis performed with ground and dried crystals of [1](OTf)2 indicate that at least two 
MeCN ligands are removed under vacuum. In addition, evidence for Fe–OTf bonding in non‐
coordinating solvents was obtained by using 19F NMR spectroscopy. For [1](OTf)2 in CD3CN, the triflate 
counteranion gives rise to a sharp peak at δ = –79.2 ppm, which is identical to the chemical shift 
observed for [NBu4]OTf under the same conditions. The lengthy longitudinal relaxation time (T1 value) 
of 128 ms measured for this feature suggests that the triflate counteranion is only weakly associated 
with the [Fe(2‐TIPPh2)]2+ unit in MeCN. In contrast, the 19F NMR spectrum of [1](OTf)2 in CD2Cl2 exhibits 
a broad feature at δ = –60.9 ppm with a short T1 value of 14 ms (Figure S1 in the Supporting 
Information), which indicates that the triflate ion is directly bound to the Fe center. 

Reaction of equimolar amounts of Fe(OTf)2, 2‐TIPPh2, and sodium benzoate (NaOBz) in MeOH provided 
the colorless complex [Fe(2‐TIPPh2)(OBz)(MeOH)]OTf ([2]OTf), as shown in Scheme 3. X‐ray‐quality 
crystals were obtained from a solution of [2]OTf in MeOH layered with pentane. The resulting structure 
reveals a pentacoordinate (5C) iron(II) center with a κ3‐2‐TIPPh2 ligand, monodentate benzoate ligand, 
and bound solvent (Figure 2). In addition to the second‐sphere triflate anion, the asymmetric unit also 
contains four MeOH molecules that do not directly interact with the [2]+ cation. The complex adopts a 
distorted square‐pyramidal geometry (τ = 0.2523) with an O2N2 pseudobasal plane. Two phenyl rings of 
the 2‐TIPPh2 ligand lie across the vacant coordination site (i.e., parallel to the plane of the benzoate 
ligand), which prevents further solvent binding. The Fe–NTIP and Fe–O distances are typical for high‐
spin Fe2+ centers (Table 2). The H atom of the coordinated MeOH molecule was found objectively and 
refined. The resulting O2···O3 distance of 2.610(2) Å and H3···O2 distance of 1.81(1) Å are indicative of 
an intramolecular hydrogen bond that closes a six‐membered ring. 
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Figure 2 

Thermal ellipsoid plot (50 % probability) derived from[2]OTf·4MeOH. Non‐coordinating solvent 
molecules, counteranions, and most H atoms have been omitted for clarity. The dotted line indicates 
the hydrogen‐bonding interaction between H3 of the MeOH ligand and O2 of the benzoate anion. 

Table 2. Selected metric parameters for ferrous carboxylate complexes [2]OTf·4MeOH, 3·2CH2Cl2, and 
[5]BPh4·3MeOH. Bond lengths in Å and angles in degrees. 

 
[2]OTf·4MeOH 3·2CH2Cl2[a] [5]BPh4·3MeOH 

Fe1–N2 2.124(2) 2.129(3) 2.193(4) 
Fe1–N4 2.127(2) 2.111(3) 2.195(4) 
Fe1–N6 2.226(2) 2.210(3) 2.186(4) 
Fe–NLN3 (av.) 2.158 2.150 2.191 
Fe1–O1 2.011(1) 1.977(3) 2.245(4) 
Fe1–O2 

  
2.256(4) 

Fe1–O3(N7) 2.105(1) 2.144(3) 2.077(4) 
O1–Ccarboxyl 1.273(2) 1.271(5) 1.267(6) 
O2–Ccarboxyl 1.254(2) 1.244(4) 1.268(6)     
N2–Fe1–N4 93.94(6) 94.3(1) 90.2(2) 
N2–Fe1–N6 85.36(6) 80.7(1) 90.3(2) 
N4–Fe1–N6 91.69(6) 87.4(1) 90.6(2) 
O1–Fe1–N2 153.44(6) 152.4(1) 105.9(2) 
O1–Fe1–N4 112.06(6) 110.9(1) 91.1(2) 
O1–Fe1–N6 88.38(6) 89.2(1) 163.7(2) 
O1–Fe1–O3(N7) 87.64(6) 98.7(1) 84.6(2) 
N2–Fe1–O3(N7) 93.34(6) 89.0(1) 93.9(2) 
N4–Fe1–O3(N7) 100.01(6) 96.6(1) 174.8(2) 
N6–Fe1–O3(N7) 168.29(6) 169.2(1) 92.6(2) 
τ value 0.25 0.28 N/A 

[a] Data from the literature.24 The N and O atoms in the 3·2CH2Cl2 structure were renumbered to correspond to 
the numbering scheme used for the other complexes. 
 

Complex [2]+ resembles the structure of [Fe(Ph,MeTp)(OBz)(Ph,Mepyz)] (3; in which Ph,Mepyz = 3‐phenyl‐5‐
methylpyrazole) published by Fujisawa and co‐workers.24 Both complexes feature a distorted square‐
pyramidal geometry with a monodentate benzoate ion linked to a neutral ligand by means of an 
intramolecular hydrogen bond. As shown in Table 2, the metric parameters of [2]+ and 3 are quite 
similar; indeed, the average Fe–NTIP distance of 2.16 Å found for [2]+ is only 0.01 Å longer than the 
average Fe–NTp distance in 3. This result is consistent with our previous study of [Fe2+(LN3)(β‐
diketonato)]+/0 complexes that found only slight differences (on average) between Fe–NTIP and Fe–
NTp bond lengths in 5C species, despite the different charges of the supporting ligands.19 

Starting from either of these two Fe(2‐TIPPh2) precursors – [1](OTf)2 or [2]OTf – we were able to 
generate the complex [Fe(2‐TIPPh2)(acacPhF3)]OTf ([4]OTf; Scheme 3; in which acacPhF3 = anion of 4,4,4‐
trifluoro‐1‐phenyl‐1,3‐butanedione). The acacPhF3 ligand was selected for two reasons: (i) it is a viable 
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Dke1 substrate,25 and (ii) previous studies in our laboratory found that [Fe(LN3)(acacPhF3)]+/0 complexes 
exhibit intense Fe2+ → acacPhF3 MLCT bands that serve as useful spectroscopic markers.19 For both 
Fe(2‐TIPPh2) precursors, reaction with Na(acacPhF3) provides a deep purple solution that displays an 
absorption manifold centered at 502 nm (ϵ = 700 M–1 cm–1; see Figure S2 in the Supporting 
Information). Not surprisingly, the[4]OTf spectrum closely resembles the one published for [Fe(4‐
TIPPh)(acacPhF3)]OTf, although the absorption features are blueshifted in the former by approximately 
400 cm–1.19 

Crystals of [4]OTf were obtained from the reaction of [1](OTf)2 and Na(acacPhF3) in CH2Cl2, followed by 
crystallization in CH2Cl2/pentane. The asymmetric unit contains two independent units with virtually 
identical structures. As shown in Figure 3, the 5C Fe2+ center is coordinated to the 2‐TIPPh and 
acacPhF3 ligands in a distorted trigonal‐bipyramidal geometry (τ = 0.51) with the O atom proximal to the 
CF3 group (O1) in the axial position. The metric parameters of [4]OTf are not significantly different from 
those reported previously for [Fe2+(Ph2Tp)(acacPhF3)] and [Fe2+(4‐TIPPh)(acacPhF3)]OTf.19 

 

Figure 3 

Thermal ellipsoid plot (50 % probability) derived from[4]OTf·2CH2Cl2. Non‐coordinating solvent 
molecules, counteranions, and most H atoms have been omitted for clarity. Only one of the two 
independent [5]+ units is shown. Selected bond lengths [Å] and angles [°] for this unit: Fe1–O1 2.089(3), 
Fe1–O2 1.973(3), Fe1–N2 2.118(4), Fe1–N4 2.190(4), Fe1–N6 2.118(4); O1–Fe1–O2 87.2(1), O1–Fe1–
N2 91.0(2), O1–Fe1–N4 176.4(2), O1–Fe1–N6 89.5(2), O2–Fe1–N2 120.4(2), O2–Fe1–N4 96.5(2), O2–
Fe1–N6 146.3(2). 

The solution structures of [2]OTf and [4]OTf in CD2Cl2 were probed using 1H NMR spectroscopy, and 
the observed chemical shifts, peak integrations, and T1 values are summarized in Table 3. The three 
imidazole ligands are spectroscopically equivalent in solution due to dynamic averaging of the ligand 
positions on the NMR spectroscopic timescale. The 2‐TIPPh2‐derived resonances were assigned with the 
help of peak integrations and by making two assumptions: (i) T1 values follow the 
order ortho < meta < para for each phenyl ring,13c,19 and (ii) T1 values of the 4‐Ph protons are shorter 
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than the corresponding protons on the 5‐Ph ring. Thus, the fast‐relaxing peaks (T1 ≈ 1 ms) near –20 
ppm were attributed to the ortho protons of the 4‐phenyl 2‐TIPPh2 substituents, which are positioned 
near the Fe2+ center. The peaks with the largest integration at (21 ± 1) ppm were assigned to the 1‐N‐
Me protons. The remaining resonances were then identified as the benzoate and acacPhF3 groups of 
[2]OTf and [4]OTf, respectively, by using the relative T1 values to assign the phenyl resonances of both 
ligands. 

Table 3. Summary of 1H NMR spectroscopic parameters for [2]OTf and [4]OTf in CD2Cl2. 

[2]OTf   [4]OTf   
Resonance δ [ppm] T1 [ms] Resonance δ [ppm] T1 [ms] 
o‐4‐Ph –21.0 1.1 o‐4‐Ph –16.0 0.4 
m‐4‐Ph 6.7 12.0 m‐4‐Ph 5.2 4.7 
p‐4‐Ph 9.0 31.6 p‐4‐Ph 9.3 13.3       
o‐5‐Ph 2.6 31.5 o‐5‐Ph 2.4 13.7 
m‐5‐Ph 6.3 159 m‐5‐Ph 6.1 88.2 
p‐5‐Ph 5.2 238 p‐5‐Ph 5.0 120       
N‐1‐Me 21.9 15.7 N‐1‐Me 20.2 5.9       
o‐OBz 34.8 3.2 acac o‐Ph 22.6 1.7 
m‐OBz 19.0 37.0 acac m‐Ph 9.5 20.0 
p‐OBz 10.6 67.6 acac p‐Ph 17.3 45.5    

acac H 39.4 0.8 
Fe2+ Complexes Containing 4‐TIPPh 

The complex [Fe(4‐TIPPh)(OAc)(MeOH)]BPh4 ([5]BPh4) was generated by addition of NaBPh4 to a 
solution of Fe(OAc)2 and 4‐TIPPh in MeOH, which resulted in the immediate formation of a white 
precipitate (Scheme 4). The IR spectrum of the isolated solid revealed a peak at 3259 cm–1 from the 
ν(N–H) stretch of the 4‐TIPPh ligands, along with acetate‐derived features at 1562 and 1402 cm–1. The 
4‐TIPPh‐derived resonances in the 1H NMR spectrum largely followed the pattern reported previously 
for [Fe2+(4‐TIPPh)(acacX)]+ complexes.19 The acetate ligand of [5]BPh4 exhibited a downfield signal 
at δ = +105 ppm. 

 

Scheme 4 

X‐ray‐quality crystals of [5]BPh4 were prepared by slowly cooling a solution of [5]BPh4 in MeOH; the 
[5]+ cation is shown in Figure 4 and the corresponding bond lengths and angles are provided in Table 2. 
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The high‐spin Fe2+ center is hexacoordinate with a facially coordinating 4‐TIPPh ligand. The Fe–
NTIP distances in [5]+ are quite similar to those found for [1]2+ and [2]+, which suggests that the 4‐
TIPPh and 2‐TIPPh2 ligands possess comparable donor properties. The κ2‐acetate ligand coordinates in a 
symmetric manner with nearly identical Fe–Oacetate distances of 2.251(6) Å. The remaining site is 
occupied by a solvent molecule trans to N4 with a relatively short Fe–OMeOH distance of 2.077(4) Å. The 
crystal structure of [5]BPh4·3MeOH also features an extensive hydrogen‐bonding network. As shown in 
Figure 4, the coordinated acetate and MeOH moieties participate in hydrogen‐bonding interactions 
with three MeOH “chaperones” that comprise a second‐sphere shell surrounding one face of the 
[5]+ octahedron. In addition, the MeOH molecules that serve as hydrogen‐bond donors to the acetate 
ligand also act as hydrogen‐bond acceptors for two H–Nimidazole groups on adjacent [5]+ cations. 

 

Figure 4 

Thermal ellipsoid plot (50 % probability) derived from[5]BPh4·3MeOH. The BPh4 counteranion and 
most H atoms have been omitted for clarity. The dotted lines signify the hydrogen‐bonding interactions 
between the coordinated acetate and MeOH ligands and three second‐sphere solvent molecules. Note: 
Ellipsoids are not shown for the proximal 2‐Ph substituent due to disorder. 

Significantly, we found that [5]BPh4 provides access to iron(II) salicylate (sal) species that mimic the 
enzyme–substrate complex of SDO. The complex [Fe(4‐TIPPh)(sal)] (6) was prepared by mixing 
[5]BPh4 with salicylic acid (1 equiv.) in MeOH, followed by layering with MeCN (Scheme 4). As shown in 
Figure 5, the X‐ray crystal structure of 6 reveals a neutral 5C Fe2+ complex with a geometry between 
square pyramidal and trigonal bipyramidal (τ = 0.35). The dianionic salicylate ligand coordinates in a 
bidentate fashion with Fe–O bond lengths of 1.958(1) and 2.060(1) Å for the phenolate and carboxylate 
donors, respectively. To the best of our knowledge, 6 represents the first structurally characterized 
iron(II) salicylate complex in the chemical literature.26 
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Figure 5 

Thermal ellipsoid plot (50 % probability) derived from 6·MeOH·MeCN. The noncoordinating MeCN and 
most H atoms have been omitted for clarity. The dotted line represents the hydrogen‐bonding 
interaction between the salicylate ligand and MeOH. Selected bond lengths [Å] and angles [°]: Fe1–O1 
2.060(1), Fe1–O3 1.958(1), Fe1–N2 2.135(1), Fe1–N4 2.150(1), Fe1–N6 2.183(1), O1–C28 1.257(2), O2–
C28 1.273(2), O3–C30 1.327(2), O3···O1S 2.725(1); O1–Fe1–O3 86.29(4), O1–Fe1–N2 92.17, O1–Fe1–
N4 96.90(4), O1–Fe1–N6 168.66(4), O3–Fe1–N2 147.75(4), O3–Fe1–N4 117.46(4), O3–Fe1–N6 
91.71(4). 

As with [5]BPh4·3MeOH, the lattice of 6 exhibits numerous hydrogen‐bonding interactions (see 
Scheme 5). The uncoordinated oxygen atom of the carboxylate (O2) forms hydrogen bonds with two 
H–N groups belonging to adjacent 4‐TIPPh ligands. These interactions account for the fact that O2–C28 
is unexpectedly longer than O1–C28 [1.273(2) vs. 1.257(2), respectively], which indicates that the 
negative charge is delocalized over the carboxylate moiety. The crystal also contains noncoordinating 
MeCN and MeOH molecules (one of each); the latter serves as a hydrogen‐bond donor to the 
phenolate oxygen atom (O3) of the salicylate, while acting as a hydrogen‐bond acceptor to an 
imidazole H–N group. Thus, in this structure, MeOH behaves in a manner similar to second‐sphere 
residues in dioxygenase active sites, which often play a crucial role in stabilizing metal‐bound 
substrates through noncovalent interactions.27 
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Scheme 5 

Hydrogen‐bonding network in the solid‐state structure of 6. 

Conclusion 
This paper has described the synthesis and X‐ray structural characterization of iron(II) complexes 
supported by tris(imidazolyl)phosphane ligands (2‐TIPPh2 and 4‐TIPPh). Three of the complexes – 
[1](OTf)2, [2]OTf, and [5]BPh4 – feature easily displaced ligands, such as solvent molecules and/or 
carboxylates, in the coordination sites trans to the TIP chelate. These complexes exhibit variability in 
their coordination numbers (5C or 6C) and carboxylate binding modes (κ1 or κ2). Intra‐ and 
intermolecular hydrogen‐bonding interactions between the ligands and solvent are evident in the 
solid‐state structures of each complex {with the exception of [1](OTf)2} In particular, the presence of 
unprotected imidazole groups in [5]BPh4 gives rise to an extensive hydrogen‐bonding network in which 
second‐sphere MeOH molecules form bridges between acetate ligands andH–Nimid groups from 
neighboring [5]+ units. 

Like the resting states of the enzymatic active sites, these “precursor” complexes are intended to serve 
as scaffolds that permit various substrate ligands to coordinate to the iron(II) center. The versatility of 
this approach was demonstrated by the formation of the Dke1 model [4]OTf from the reaction of 
Na(acacPhF3) with the 2‐TIPPh2‐based complexes [1](OTf)2 and [2]OTf. Similarly, the SDO model 6 was 
generated through the direct reaction of [5]BPh4 with salicylic acid. The facile formation of [4]OTf 
and 6 indicates that the TIP ligands are resistant to displacement by strong, anionic ligands. This is 
significant because half‐sandwich ferrous complexes with neutral LN3 ligands, such as 
trispyrazolylmethanes, have been shown to suffer from high lability and a tendency to decompose to 
the more stable bis‐ligand species.21 The relatively short Fe–NTIP bond lengths found in our series of 
complexes suggest that the TIP ligands bind tightly to the iron centers. Thus, the precursor complexes 
described here provide a robust platform for the development of synthetic models of dioxygenases 
with the 3His facial triad. 
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Experimental Section 
General Procedures: All reagents and solvents were purchased from commercial sources and used as 
received unless otherwise noted. MeCN and CH2Cl2 were purified and dried using a Vacuum 
Atmospheres solvent purification system. The compounds 4,5‐diphenyl‐1‐methylimidazole28 and 4‐
TIPPh[16h] were prepared according to literature procedures. The synthesis and handling of air‐sensitive 
materials were carried out under an inert atmosphere using a Vacuum Atmospheres Omni‐Lab 
glovebox equipped with a freezer set to –30 °C. Elemental analyses were performed at Midwest 
Microlab, LLC in Indianapolis, IN. Infrared (IR) spectra of solid samples were measured with a Thermo 
Scientific Nicolet iS5 FTIR spectrometer equipped with the iD3 attenuated total reflectance accessory. 
UV/Vis spectra were obtained with an Agilent 8453 diode array spectrometer. NMR spectra were 
recorded on a Varian 400 MHz spectrometer. 19F NMR spectra were referenced using the 
benzotrifluoride peak at –63.7 ppm. 31P NMR spectra were referenced to external H3PO4 (δ = 0 ppm). 
Magnetic susceptibility measurements were carried out using the Evans NMR method. 

2‐TIPPh2: 4,5‐Diphenyl‐1‐methylimidazole (6.81 g, 29.1 mmol) was dissolved in THF (175 mL) and the 
solution was purged with argon for 25 min. The flask was cooled to –78 °C and nBuLi (32.0 mmol) was 
added dropwise. The solution was stirred for 30 min at –78 °C and then for 30 min at room 
temperature. The reaction was cooled again to –78 °C and PCl3 (0.850 mL, 9.74 mmol) was added 
slowly. The mixture was allowed to slowly warm to room temp. over the course of several hours, and 
then 30 % NH4OH (75 mL) was added and stirred for 1 h. The layers were separated and the aqueous 
layer was extracted with THF (2 × 35 mL). The combined THF layers were washed with H2O and brine 
(50 mL each), dried with MgSO4, and the solvent was removed under vacuum. The orange residue was 
triturated with pentane and washed with methanol, thereby providing a fine white powder (1.66 g); 
yield 24 %. C48H39N6P (730.8): calcd. C 78.88, H 5.38, N 11.50; found C 78.05, H 5.83, N 11.03. The 
disagreement indicates that small amounts of impurities are present. 1H NMR (400 MHz, CDCl3): δ = 
7.48 (m, 12 H, Ar–H), 7.40 (m, 6 H, Ar–H), 7.17 (m, 12 H, Ar–H), 3.64 (s, 9 H, CH3) ppm. 13C NMR (100 
MHz, CDCl3): δ = 140.5, 140.0, 139.9, 134.8, 133.6, 131.1, 131.0, 129.2, 129.0, 128.2, 126.9, 126.5, 33.4 
ppm. 31P NMR (162 MHz, CDCl3): δ = –56.6 ppm. IR (neat):  = 3053, 2940, 2863, 1601, 1503, 1442, 
1363, 1071, 1024, 961 cm–1. 

[Fe(2‐TIPPh2)(MeCN)3](OTf)2 {[1](OTf)2}: 2‐TIPPh2 (1.32 g, 1.81 mmol) and Fe(OTf)2 (670 mg, 1.90 mmol) 
were mixed in CH3CN (20 mL) and stirred until the solution had become clear (about 3 h). The solution 
was filtered and layered with excess Et2O; X‐ray‐quality crystals formed after one day. The white 
crystals were collected and dried under vacuum to provide 1.31 g of material; yield 60 %. Elemental 
analysis showed that at least two of thecoordinated CH3CN ligands are removed upon drying. 
C50H39F6FeN6O6PS2·CH3CN (1125.9): calcd. C 55.47, H 3.76, N 8.71; found C 55.02, H 3.90, N 8.68. IR 
(neat):  = 3048, 2932, 2283 [ν(C≡N)], 1466, 1444, 1257, 1222, 1145, 1028, 983 cm–1. 

[Fe(2‐TIPPh2)(OBz)(MeOH)]OTf ([2]OTf): 2‐TIPPh2 (779 mg, 1.07 mmol), NaOBz (155 mg, 1.07 mmol), 
and Fe(OTf)2 (378 mg, 1.07 mmol) were combined in MeOH (12 mL). After stirring for several hours the 
precipitate was removed by filtration and the filtrate was reduced to about 5 mL in volume. Layering 
with pentane afforded the desired product as a white crystalline material (116 mg); yield 11 %. X‐ray 
diffraction analysis revealed four uncoordinated MeOH molecules in the resulting structure, and 
elemental analysis indicated that two solvent molecules remain after drying under vacuum. 
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C57H47F3FeN6O6PS·2CH3OH (1152.0): calcd. C 61.51, H 4.81, N 7.30; found C 61.35, H 4.48, N 7.07. IR 
(neat):  = 3043, 2953, 1598, 1551, 1443, 1370, 1258, 1153, 1029, 981 cm–1. 

[Fe(2‐TIPPh2)(acacPhF3)]OTf ([4]OTf): A solution of 4,4,4‐trifluoro‐1‐phenyl‐1,3‐butanedione (126 mg, 
0.584 mmol) and NaOCH3 (32 mg, 0.59 mmol) in THF was stirred for 30 min, after which the solvent 
was removed under vacuum to give white Na(acacPhF3). Na(acacPhF3) was then dissolved in CH3CN (5 
mL) and slowly added to a solution of [1](OTf)2 (704 mg, 0.583 mmol) in CH2Cl2 (5 mL). The purple 
solution was stirred overnight and the solvent was removed under vacuum. The residue was dissolved 
in CH2Cl2 (5 mL), filtered, and layered with pentane to yield deep red crystals suitable for X‐ray 
crystallography (457 mg); yield 68 %. The X‐ray structure revealed uncoordinated CH2Cl2 molecules in 
the asymmetric units, and elemental analysis suggests that a small amount of solvent (≈0.7 equiv.) 
remains after vacuum drying. C59H45F6FeN6O5PS·0.7CH2Cl2 (1210.36): calcd. C 59.24, H 3.86, N 6.94; 
found C 59.25, H 3.99, N 6.75. UV/Vis (MeCN): λmax (ϵ, M–1 cm–1) = 519 (720), 494 (730) nm. IR 
(neat):  = 3058, 2955, 1602 [ν(C=O)], 1572, 1462, 1443, 1253, 1141, 1029, 981 cm–1. 19F NMR (376 
MHz, CD2Cl2): δ = –44.9 (acacPhF3), –77.7 (OTf) ppm. 

[Fe(4‐TIPPh)(OAc)(MeOH)]BPh4 ([5]BPh4): Fe(OAc)2 (488 mg, 2.81 mmol) and 4‐TIPPh (1.28 g, 2.79 
mmol) were stirred in MeOH (10 mL) for 10 min while the solution became clear. A solution of 
NaBPh4 (956 mg, 2.79 mmol) in MeOH was then added dropwise and the mixture was stirred for 5 h. 
During this time, a white precipitate developed. The white solid was collected and recrystallized from 
MeOH at –30 °C; yield 48 %. Elemental analysis indicates that the bound MeOH ligand only partially 
(50 %) occupied the complex in the ground, vacuum‐dried solid. C53H44BFeN6O2P·0.5MeOH (910.6): 
calcd. C 70.57, H 4.98, N 9.23; found C 70.69, H 5.08, N 8.95. IR (neat):  = 3304, 3259 [ν(N–H)], 3054, 
2999, 2993, 2928, 1562 [νas(OCO)], 1478, 1402 [νs(OCO)], 1341 cm–1. 

[Fe(4‐TIPPh)(sal)] (6): A suspension of [5]BPh4 (142 mg, 0.159 mmol) and sodium salicylate (28.0 mg, 
0.175 mmol) was stirred overnight in MeOH (5 mL). The resulting yellow solution was layered with 
MeCN to provide X‐ray‐quality crystals of 6; yield 32 %. C34H25FeN6O3P (652.4): calcd. C 62.59, H 3.86, N 
12.88; found C 62.19, H 3.98, N 12.52. UV/Vis (MeOH): λmax (ϵ, M–1 cm–1) = 440 (150) nm. IR (neat):  = 
3133, 3052, 2900, 1598, 1563, 1521, 1476, 1458, 1439, 1386, 1314 cm–1. 

X‐ray Structure Determination: XRD data were collected at 100 K with an Oxford Diffraction 
SuperNova kappa‐diffractometer (Agilent Technologies) equipped with dual microfocus Cu/Mo X‐ray 
sources, X‐ray mirror optics, Atlas CCD detector, and low‐temperature Cryojet device. Crystallographic 
data for particular compounds are summarized in Table 4. The data were analyzed with the CrysAlis 
Pro program package (Agilent Technologies, 2011) typically using a numerical Gaussian absorption 
correction (based on the real shape of the crystal), followed by an empirical multiscan correction using 
the SCALE3 ABSPACK routine. The structures were solved using the SHELXS program and refined with 
the SHELXL program29 within the Olex2 crystallographic package.30 B‐, H‐, and C‐bonded hydrogen 
atoms were positioned geometrically and refined using appropriate geometric restrictions on the 
corresponding bond lengths and bond angles within a riding/rotating model (torsion angles of methyl 
hydrogen atoms were rotationally optimized to better fit the residual electron density). The positions 
of the methanolic hydrogen atoms (H3) in [2]OTf·4MeOH and [5]BPh4·3MeOH were refined freely. The 
remaining OH groups were refined using geometrical restrictions and rotationally optimized to better 
fit the residual electron density. Crystals of [4]OTf·2CH2Cl2 represent pseudo‐orthorhombic quasi‐
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merihedral twins (β ≈ 90°). Crystals of [5]BPh4·3MeOH are systematic twins grown together along a 
common bc plane. The chiral space group (P21) of [5]BPh4·3MeOH does not result from the molecular 
chirality of the cation, but rather from crystal packing. The cation itself has an approximate local mirror 
symmetry (in the direction perpendicular to crystallographic z axis). The apparent result of this local 
symmetry is the observed twinning. The twinning, however, annihilates the chirality on the 
macroscopic level since the components of the twin are of opposite chirality. 

Table 4. Summary of the X‐ray crystallographic data collection and structure refinement. 
 

[1](OTf)2·0.5Et
2O 

[2]OTf·4MeO
H 

[4]OTf·2CH2Cl2

[a] 
[5]BPh4·3M
eOH 

6·MeCN·M
eOH 

Empirical formula C58H53F6FeN9O
6.5PS2 

C61H64F3FeN6

O10PS 
C61H49Cl4F6FeN
6O5PS 

C57H60BFeN6

O6P 
C37H32FeN7

O4P 
Formula weight 1245.03 1217.06 1320.77 1022.74 725.52 
Crystal system triclinic triclinic monoclinic monoclinic monoclinic 
Space group P  P  Pc P21 P21/n 
a [Å] 13.3432(3) 14.9470(5) 16.0689(5) 13.8829(3) 13.6187(7) 
b [Å] 15.8007(3) 15.1921(5) 20.6668(5) 11.6385(4) 14.9164(9) 
c [Å] 27.8621(6) 16.4349(6) 19.6239(4) 16.5130(4) 17.5278(8) 
α [°] 76.994(2) 90.642(3) 90 90 90 
β [°] 88.757(2) 113.784(3) 90.088(2) 91.591(2) 102.190(5) 
γ [°] 87.690(2) 115.873(4) 90 90 90 
V [Å3] 5718.4(2) 2992.3(3) 6516.9 2667.1(2) 3480.4(3) 
Z 4 2 4 2 4 
Dcalcd. [g cm3] 1.446 1.351 1.325 1.274 1.385 
λ [Å] 1.5418 1.5418 0.7107 1.5418 1.5418 
μ [mm–1] 3.749 3.205 0.489 2.996 4.328 
θ range [°] 7 to 149 7 to 148 7 to 59 4 to 148 4 to 149 
Reflections collected 64740 39217 56565 32914 26690 
Independent 
reflections 

22662 11891 28249 10151 6954 
 

(Rint = 0.0315) (Rint = 0.0299) (Rint = 0.0339) (Rint = 
0.1419) 

(Rint = 
0.0278) 

Data/restraints/para
meters 

22662/19/159
1 

11891/2/784 28249/12/155
0 

10151/87/6
43 

6954/0/45
4 

GOF (on F2) 1.025 1.028 1.061 1.025 1.037 
R1/wR2 [I > 2σ(I)][b] 0.0332/0.0855 0.0413/0.109

4 
0.0608/0.1541 0.0682/0.17

78 
0.0273/0.0
710 

R1/wR2 (all data) 0.0374/0.0886 0.0449/0.112
8 

0.0666/0.1613 0.0872/0.19
63 

0.0306/0.0
731 

[a] One of the solvates in [4]OTf·2CH2Cl2 is partially occupied by a pentane molecule. 
[b] R1 = Σ ||Fo| – |Fc||/Σ|Fo|; wR2 = [Σw(Fo

2 – Fc
2)2/Σw(Fo

2)2]1/2. 
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