6 research outputs found

    The SLUGGS Survey: kinematics for over 2500 globular clusters in twelve early-type galaxies

    Get PDF
    We present a spectrophotometric survey of 2522 extragalactic globular clusters (GCs) around 12 early-type galaxies, nine of which have not been published previously. Combining space-based and multicolour wide-field ground-based imaging, with spectra from the Keck/DEep Imaging Multi-Object Spectrograph (DEIMOS) instrument, we obtain an average of 160 GC radial velocities per galaxy, with a high-velocity precision of ∼15 km s−1 per GC. After studying the photometric properties of the GC systems, such as their spatial and colour distributions, we focus on the kinematics of metal-poor (blue) and metal-rich (red) GC subpopulations to an average distance of ∼8 effective radii from the galaxy centre. Our results show that for some systems the bimodality in GC colour is also present in GC kinematics. The kinematics of the red GC subpopulations are strongly coupled with the host galaxy stellar kinematics. The blue GC subpopulations are more dominated by random motions, especially in the outer regions, and decoupled from the red GCs. Peculiar GC kinematic profiles are seen in some galaxies: the blue GCs in NGC 821 rotate along the galaxy minor axis, whereas the GC system of the lenticular galaxy NGC 7457 appears to be strongly rotation supported in the outer region. We supplement our galaxy sample with data from the literature and carry out a number of tests to study the kinematic differences between the two GC subpopulations. We confirm that the GC kinematics are coupled with the host galaxy properties and find that the velocity kurtosis and the slope of their velocity dispersion profiles are different between the two GC subpopulations in more massive galaxies

    Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases

    No full text
    Acetyl xylan esterases (AcXEs), also termed xylan deacetylases, are broad specificity Carbohydrate-Active Enzymes (CAZymes) that hydrolyse ester bonds to liberate acetic acid from acetylated hemicellulose (typically polymeric xylan and xylooligosaccharides). They belong to eight families within the Carbohydrate Esterase (CE) class of the CAZy database. AcXE classification is largely based on sequence-dependent phylogenetic relationships, supported in some instances with substrate specificity data. However, some sequence-based predictions of AcXE-encoding gene identity have proved to be functionally incorrect. Such ambiguities can lead to mis-assignment of genes and enzymes during sequence data-mining, reinforcing the necessity for the experimental confirmation of the functional properties of putative AcXE-encoding gene products. Although one-third of all characterized CEs within CAZy families 1–7 and 16 are AcXEs, there is a need to expand the sequence database in order to strengthen the link between AcXE gene sequence and specificity. Currently, most AcXEs are derived from a limited range of (mostly microbial) sources and have been identified via culture-based bioprospecting methods, restricting current knowledge of AcXEs to data from relatively few microbial species. More recently, the successful identification of AcXEs via genome and metagenome mining has emphasised the huge potential of culture-independent bioprospecting strategies. We note, however, that the functional metagenomics approach is still hampered by screening bottlenecks. The most relevant recent reviews of AcXEs have focused primarily on the biochemical and functional properties of these enzymes. In this review, we focus on AcXE phylogeny, classification and the future of metagenomic bioprospecting for novel AcXEs.The South African Department of Science and Technology Biocatalysis Initiative, National Research Foundation (DAC, TPM), the University of Pretoria’s Genomics Research Institute (DAC) and Research Development Program (TPM). FAA was supported by funds from the Organisation for Women in Science in the Developing World (OWSD).http://www.elsevier.com/locate/emt2017-11-30hb2016Genetic
    corecore