344 research outputs found
BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network
Several homeodomain (HD) proteins are critical for skeletal patterning and respond directly to BMP2 as an early step in bone formation. RUNX2, the earliest transcription factor proven essential for commitment to osteoblastogenesis, is also expressed in response to BMP2. However, there is a gap in our knowledge of the regulatory cascade from BMP2 signaling to the onset of osteogenesis. Here we show that BMP2 induces DLX3, a homeodomain protein that activates Runx2 gene transcription. Small interfering RNA knockdown studies in osteoblasts validate that DLX3 is a potent regulator of Runx2. Furthermore in Runx2 null cells, DLX3 forced expression suffices to induce transcription of Runx2, osteocalcin, and alkaline phosphatase genes, thus defining DLX3 as an osteogenic regulator independent of RUNX2. Our studies further show regulation of the Runx2 gene by several homeodomain proteins: MSX2 and CDP/cut repress whereas DLX3 and DLX5 activate endogenous Runx2 expression and promoter activity in non-osseous cells and osteoblasts. These HD proteins exhibit distinct temporal expression profiles during osteoblast differentiation as well as selective association with Runx2 chromatin that is related to Runx2 transcriptional activity and recruitment of RNA polymerase II. Runx2 promoter mutagenesis shows that multiple HD elements control expression of Runx2 in relation to the stages of osteoblast maturation. Our studies establish mechanisms for commitment to the osteogenic lineage directly through BMP2 induction of HD proteins DLX3 and DLX5 that activate Runx2, thus delineating a transcriptional regulatory pathway mediating osteoblast differentiation. We propose that the three homeodomain proteins MSX2, DLX3, and DLX5 provide a key series of molecular switches that regulate expression of Runx2 throughout bone formation. <br/
Toxicity of dietary methylmercury to fish: Derivation of ecologically meaningful threshold concentrations
Threshold concentrations associated with adverse effects of dietary exposure to methylmercury (MeHg) were derived from published results of laboratory studies on a variety of fish species. Adverse effects related to mortality were uncommon, whereas adverse effects related to growth occurred only at dietary MeHg concentrations exceeding 2.5 µg g −1 wet weight. Adverse effects on behavior of fish had a wide range of effective dietary concentrations, but generally occurred above 0.5 µg g −1 wet weight. In contrast, effects on reproduction and other subclinical endpoints occurred at dietary concentrations that were much lower (<0.2 µg g −1 wet wt). Field studies generally lack information on dietary MeHg exposure, yet available data indicate that comparable adverse effects have been observed in wild fish in environments corresponding to high and low MeHg contamination of food webs and are in agreement with the threshold concentrations derived here from laboratory studies. These thresholds indicate that while differences in species sensitivity to MeHg exposure appear considerable, chronic dietary exposure to low concentrations of MeHg may have significant adverse effects on wild fish populations but remain little studied compared to concentrations in mammals or birds. Environ. Toxicol. Chem. 2012; 31: 1536–1547. © 2012 SETACPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92130/1/etc_1859_sm_SupplReferences.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92130/2/1859_ftp.pd
Silicon carbide absorption features: dust formation in the outflows of extreme carbon stars
Infrared carbon stars without visible counterparts are generally known as
extreme carbon stars. We have selected a subset of these stars with absorption
features in the 10-13 m range, which has been tentatively attributed to
silicon carbide (SiC). We add three new objects meeting these criterion to the
seven previously known, bringing our total sample to ten sources. We also
present the result of radiative transfer modeling for these stars, comparing
these results to those of previous studies. In order to constrain model
parameters, we use published mass-loss rates, expansion velocities and
theoretical dust condensation models to determine the dust condensation
temperature. These show that the inner dust temperatures of the dust shells for
these sources are significantly higher than previously assumed. This also
implies that the dominant dust species should be graphite instead of amorphous
carbon. In combination with the higher condensation temperature we show that
this results in a much higher acceleration of the dust grains than would be
expected from previous work. Our model results suggest that the very optically
thick stage of evolution does not coincide with the timescales for the
superwind, but rather, that this is a very short-lived phase. Additionally, we
compare model and observational parameters in an attempt to find any
correlations. Finally, we show that the spectrum of one source, IRAS
175343030, strongly implies that the 10-13 m feature is due to a solid
state rather than a molecular species.Comment: 13 Figure
Physical Activity Characteristics across GOLD Quadrants Depend on the Questionnaire Used
BACKGROUND:The GOLD multidimensional classification of COPD severity combines the exacerbation risk with the symptom experience, for which 3 different questionnaires are permitted. This study investigated differences in physical activity (PA) in the different GOLD quadrants and patient's distribution in relation to the questionnaire used. METHODS:136 COPD patients (58±21% FEV1 predicted, 34F/102M) completed COPD assessment test (CAT), clinical COPD questionnaire (CCQ) and modified Medical Research Council (mMRC) questionnaire. Exacerbation history, spirometry and 6MWD were collected. PA was objectively measured for 2 periods of 1 week, 6 months apart, in 5 European centres; to minimise seasonal and clinical variation the average of these two periods was used for analysis. RESULTS:GOLD quadrants C+D had reduced PA compared with A+B (3824 [2976] vs. 5508 [4671] steps.d-1, p<0.0001). The choice of questionnaire yielded different patient distributions (agreement mMRC-CAT κ = 0.57; CCQ-mMRC κ = 0.71; CCQ-CAT κ = 0.72) with different clinical characteristics. PA was notably lower in patients with an mMRC score ≥2 (3430 [2537] vs. 5443 [3776] steps.d-1, p <0.001) in both the low and high risk quadrants. CONCLUSIONS:Using different questionnaires changes the patient distribution and results in different clinical characteristics. Therefore, standardization of the questionnaire used for classification is critical to allow comparison of different studies using this as an entry criterion. CLINICAL TRIAL REGISTRATION:ClinicalTrials.gov NCT01388218
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
The Spitzer Spectroscopic Survey of S-type Stars
S-type AGB stars are thought to be in the transitional phase between M-type
and C-type AGB stars. Because of their peculiar chemical composition, one may
expect a strong influence of the stellar C/O ratio on the molecular chemistry
and the mineralogy of the circumstellar dust. In this paper, we present a large
sample of 87 intrinsic galactic S-type AGB stars, observed at infrared
wavelengths with the Spitzer Space Telescope, and supplemented with
ground-based optical data. On the one hand, we derive the stellar parameters
from the optical spectroscopy and photometry, using a grid of model
atmospheres. On the other, we decompose the infrared spectra to quantify the
flux-contributions from the different dust species. Finally, we compare the
independently determined stellar parameters and dust properties. For the stars
without significant dust emission, we detect a strict relation between the
presence of SiS absorption in the Spitzer spectra and the C/O ratio of the
stellar atmosphere. These absorption bands can thus be used as an additional
diagnostic for the C/O ratio. For stars with significant dust emission, we
define three groups, based on the relative contribution of certain dust species
to the infrared flux. We find a strong link between group-membership and C/O
ratio. We show that these groups can be explained by assuming that the
dust-condensation can be cut short before silicates are produced, while the
remaining free atoms and molecules can then form the observed magnesium
sulfides or the carriers of the unidentified 13 and 20 micron features.
Finally, we present the detection of emission features attributed to molecules
and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons
and magnesium sulfide grains. We show that we often detect magnesium sulfides
together with molecular SiS and we propose that it is formed by a reaction of
SiS molecules with Mg.Comment: Accepted for publication in A&
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
- …
