983 research outputs found

    Three-component modeling of C-rich AGB star winds I. Method and first results

    Get PDF
    Radiative acceleration of newly-formed dust grains and transfer of momentum from the dust to the gas plays an important role for driving winds of AGB stars. Therefore a detailed description of the interaction of gas and dust is a prerequisite for realistic models of such winds. In this paper we present the method and first results of a three-component time-dependent model of dust-driven AGB star winds. With the model we plan to study the role and effects of the gas-dust interaction on the mass loss and wind formation. The wind model includes separate conservation laws for each of the three components of gas, dust and the radiation field and is developed from an existing model which assumes position coupling between the gas and the dust. As a new feature we introduce a separate equation of motion for the dust component in order to fully separate the dust phase from the gas phase. The transfer of mass, energy and momentum between the phases is treated by interaction terms. We also carry out a detailed study of the physical form and influence of the momentum transfer term (the drag force) and three approximations to it. In the present study we are interested mainly in the effect of the new treatment of the dust velocity on dust-induced instabilities in the wind. As we want to study the consequences of the additional freedom of the dust velocity on the model we calculate winds both with and without the separate dust equation of motion. The wind models are calculated for several sets of stellar parameters. We find that there is a higher threshold in the carbon/oxygen abundance ratio at which winds form in the new model. The winds of the new models, which include drift, differ from the previously stationary winds, and the winds with the lowest mass loss rates no longer form.Comment: 15 pages, 5 figures, accepted by A&

    Split, Send, Reassemble: A Formal Specification of a CAN Bus Protocol Stack

    Get PDF
    We present a formal model for a fragmentation and a reassembly protocol running on top of the standardised CAN bus, which is widely used in automotive and aerospace applications. Although the CAN bus comes with an in-built mechanism for prioritisation, we argue that this is not sufficient and provide another protocol to overcome this shortcoming.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    Modelling polarized light from dust shells surrounding asymptotic giant branch stars

    Full text link
    Winds of asymptotic giant branch (AGB) stars are commonly assumed to be driven by radiative acceleration of dust grains. For M-type AGB stars, the nature of the wind-driving dust species has been a matter of intense debate. A proposed source of the radiation pressure triggering the outflows is photon scattering on Fe-free silicate grains. This wind-driving mechanism requires grain radii of about 0.1 - 1 micron in order to make the dust particles efficient at scattering radiation around the stellar flux maximum. Grain size is therefore an important parameter for understanding the physics behind the winds of M-type AGB stars. We seek to investigate the diagnostic potential of scattered polarized light for determining dust grain sizes. We have developed a new tool for computing synthetic images of scattered light in dust and gas shells around AGB stars, which can be applied to detailed models of dynamical atmospheres and dust-driven winds. We present maps of polarized light using dynamical models computed with the DARWIN code. The synthetic images clearly show that the intensity of the polarized light, the position of the inner edge of the dust shell, and the size of the dust grains near the inner edge are all changing with the luminosity phase. Non-spherical structures in the dust shells can also have an impact on the polarized light. We simulate this effect by combining different pulsation phases into a single 3D structure before computing synthetic images. An asymmetry of the circumstellar envelope can create a net polarization, which can be used as diagnostics for the grain size. The ratio between the size of the scattering particles and the observed wavelength determines at what wavelengths net polarization switches direction. If observed, this can be used to constrain average particle sizes.Comment: 9 page

    Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Full text link
    Context: Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aim: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features

    Analysing Mutual Exclusion using Process Algebra with Signals

    Get PDF
    In contrast to common belief, the Calculus of Communicating Systems (CCS) and similar process algebras lack the expressive power to accurately capture mutual exclusion protocols without enriching the language with fairness assumptions. Adding a fairness assumption to implement a mutual exclusion protocol seems counter-intuitive. We employ a signalling operator, which can be combined with CCS, or other process calculi, and show that this minimal extension is expressive enough to model mutual exclusion: we confirm the correctness of Peterson's mutual exclusion algorithm for two processes, as well as Lamport's bakery algorithm, under reasonable assumptions on the underlying memory model. The correctness of Peterson's algorithm for more than two processes requires stronger, less realistic assumptions on the underlying memory model.Comment: In Proceedings EXPRESS/SOS 2017, arXiv:1709.0004
    corecore