949 research outputs found

    A two-band approach to nλ\lambda phase error corrections with LBTI's PHASECam

    Full text link
    PHASECam is the Large Binocular Telescope Interferometer's (LBTI) phase sensor, a near-infrared camera which is used to measure tip/tilt and phase variations between the two AO-corrected apertures of the Large Binocular Telescope (LBT). Tip/tilt and phase sensing are currently performed in the H (1.65 μ\mum) and K (2.2 μ\mum) bands at 1 kHz, and the K band phase telemetry is used to send tip/tilt and Optical Path Difference (OPD) corrections to the system. However, phase variations outside the range [-π\pi, π\pi] are not sensed, and thus are not fully corrected during closed-loop operation. PHASECam's phase unwrapping algorithm, which attempts to mitigate this issue, still occasionally fails in the case of fast, large phase variations. This can cause a fringe jump, in which case the unwrapped phase will be incorrect by a wavelength or more. This can currently be manually corrected by the observer, but this is inefficient. A more reliable and automated solution is desired, especially as the LBTI begins to commission further modes which require robust, active phase control, including controlled multi-axial (Fizeau) interferometry and dual-aperture non-redundant aperture masking interferometry. We present a multi-wavelength method of fringe jump capture and correction which involves direct comparison between the K band and currently unused H band phase telemetry.Comment: 17 pages, 10 figure

    Remembrance

    Get PDF
    None provided

    First Light with ALES: A 2-5 Micron Adaptive Optics Integral Field Spectrograph for the LBT

    Full text link
    Integral field spectrographs are an important technology for exoplanet imaging, due to their ability to take spectra in a high-contrast environment, and improve planet detection sensitivity through spectral differential imaging. ALES is the first integral field spectrograph capable of imaging exoplanets from 3-5μ\mum, and will extend our ability to characterize self-luminous exoplanets into a wavelength range where they peak in brightness. ALES is installed inside LBTI/LMIRcam on the Large Binocular Telescope, taking advantage of existing AO systems, camera optics, and a HAWAII-2RG detector. The new optics that comprise ALES are a Keplerian magnifier, a silicon lenslet array with diffraction suppressing pinholes, a direct vision prism, and calibration optics. All of these components are installed in filter wheels making ALES a completely modular design. ALES saw first light at the LBT in June 2015.Comment: 13 pages, 9 figures, Proc. SPI

    PhoSim-NIRCam: Photon-by-photon image simulations of the James Webb Space Telescope's Near-Infrared Camera

    Full text link
    Recent instrumentation projects have allocated resources to develop codes for simulating astronomical images. Novel physics-based models are essential for understanding telescope, instrument, and environmental systematics in observations. A deep understanding of these systematics is especially important in the context of weak gravitational lensing, galaxy morphology, and other sensitive measurements. In this work, we present an adaptation of a physics-based ab initio image simulator: The Photon Simulator (PhoSim). We modify PhoSim for use with the Near-Infrared Camera (NIRCam) -- the primary imaging instrument aboard the James Webb Space Telescope (JWST). This photon Monte Carlo code replicates the observational catalog, telescope and camera optics, detector physics, and readout modes/electronics. Importantly, PhoSim-NIRCam simulates both geometric aberration and diffraction across the field of view. Full field- and wavelength-dependent point spread functions are presented. Simulated images of an extragalactic field are presented. Extensive validation is planned during in-orbit commissioning

    Variations of the 10 um Silicate Features in the Actively Accreting T Tauri Stars: DG Tau and XZ Tau

    Full text link
    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 um silicate complex in the spectra of two sources - DG Tau and XZ Tau - undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.Comment: 6 pages, emulate apj format, accepted for publication in ApJ Letter

    Disentangling the Origin and Heating Mechanism of Supernova Dust: Late-Time Spitzer Spectroscopy of the Type IIn SN 2005ip

    Get PDF
    This paper presents late-time near-infrared and {\it Spitzer} mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of ∼5×10−4 \sim 5 \times 10^{-4}~\msolar, originates from newly formed dust in the ejecta, or possibly the cool, dense shell, and is continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell ∼0.01−0.05\sim 0.01 - 0.05~\msolar~by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He 1 1.083 \micron~P Cygni profile indicates a progenitor eruption likely formed this dust shell ∼\sim100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star.Comment: 12 pages, 10 figures, Accepted to Ap
    • …
    corecore