182 research outputs found
Deep sea tests of a prototype of the KM3NeT digital optical module
The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deepwaters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same (40)Kdecay and the localisation of bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions
The reuniens and rhomboid nuclei are necessary for contextual fear memory persistence in rats.
Memory persistence refers to the process by which a temporary, labile memory is transformed into a stable and long-lasting state. This process involves a reorganization of brain networks at systems level, which requires functional interactions between the hippocampus (HP) and medial prefrontal cortex (mPFC). The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are bidirectionally connected with both regions, and we previously demonstrated their crucial role in spatial memory persistence. We now investigated, in male rats, whether specific manipulations of ReRh activity also affected contextual and cued fear memory persistence. We showed that the permanent ReRh lesion impaired remote, but not recent contextual fear memory. Tone-cued recent and remote fear memory were spared by the lesion. In intact rats, acute chemogenetic ReRh inhibition conducted before recall of either recent or remote contextual fear memories produced no effect, indicating that the ReRh nuclei are not required for retrieval of such memories. This was also suggested by a functional cellular imaging approach, as retrieval did not alter c-fos expression in the ReRh. Collectively, these data are compatible with a role for the ReRh in 'off-line' consolidation of a contextual fear memory and support the crucial importance of ventral midline thalamic nuclei in systems consolidation of memories.journal article2020 Apr2020 03 07importe
Shifting between response and place strategies in maze navigation: effects of training, cue availability and functional inactivation of striatum or hippocampus in rats
International audienc
The double-H maze test, a novel, simple, water-escape memory task: Acquisition, recall of recent and remote memory, and effects of systemic muscarinic or NMDA receptor blockade during training
To explore spatial cognition in rodents, research uses maze tasks, which differ in complexity, number of goals and pathways, behavioural flexibility, memory duration, but also in the experimenter's control over the strategy developed to reach a goal (e.g., allocentric vs. egocentric). This study aimed at validating a novel spatial memory test: the double-H maze test. The transparent device made of an alley with two opposite arms at each extremity and two in its centre is flooded. An escape platform is submerged in one arm. For experiments 1-3, rats were released in unpredictable sequences from one of both central arms to favour an allocentric approach of the task. Experiment 1 (3 trials/day over 6 days) demonstrated classical learning curves and evidence for recent and nondegraded remote memory performance. Experiment 2 (2 days, 3 trials/day) showed a dose-dependent alteration of task acquisition/consolidation by muscarinic or NMDA receptor blockade; these drug effects vanished with sustained training (experiment 3; 4 days, 3 trials/day). Experiment 4 oriented rats towards a procedural (egocentric) approach of the task. Memory was tested in a misleading probe trial. Most rats immediately switched from response learning-based to place learning-based behaviour, but only when their initial view on environmental cues markedly differed between training and probe trials. Because this simple task enables the formation of a relatively stable memory trace, it could be particularly adapted to study consolidation processes at a system level or/and the interplay between procedural and declarative-like memory systems
Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling
KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings — detection units or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema® ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper
ANTARES: the first undersea neutrino telescope
The ANTARES Neutrino Telescope was completed in May 2008 and is the first
operational Neutrino Telescope in the Mediterranean Sea. The main purpose of
the detector is to perform neutrino astronomy and the apparatus also offers
facilities for marine and Earth sciences. This paper describes the design, the
construction and the installation of the telescope in the deep sea, offshore
from Toulon in France. An illustration of the detector performance is given
Letter of intent for KM3NeT 2.0
The main objectives of the KM3NeT Collaboration are
(
i
)
the discovery and
subsequent observation of high-energy neutrino sources in the Universe and
(
ii
)
the determination of the mass hierarchy of neutrinos. These objectives are
strongly motivated by two recent important discoveries, namely:
(
1
)
the high-
energy astrophysical neutrino signal reported by IceCube and
(
2
)
the sizable
contribution of electron neutrinos to the third neutrino mass eigenstate as
reported by Daya Bay, Reno and others. To meet these objectives, the
KM3NeT Collaboration plans to build a new Research Infrastructure con-
sisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea.
A phased and distributed implementation is pursued which maximises the
access to regional funds, the availability of human resources and the syner-
gistic opportunities for the Earth and sea sciences community. Three suitable
deep-sea sites are selected, namely off-shore Toulon
(
France
)
, Capo Passero
(
Sicily, Italy
)
and Pylos
(
Peloponnese, Greece
)
. The infrastructure will consist
of three so-called building blocks. A building block comprises 115 strings,
each string comprises 18 optical modules and each optical module comprises
31 photo-multiplier tubes. Each building block thus constitutes a three-
dimensional array of photo sensors that can be used to detect the Cherenkov
light produced by relativistic particles emerging from neutrino interactions.
Two building blocks will be sparsely con
fi
gured to fully explore the IceCube
signal with similar instrumented volume, different methodology, improved
resolution and complementary
fi
eld of view, including the galactic plane. One
building block will be densely con
fi
gured to precisely measure atmospheric
neutrino oscillations.
Original content from this work may be used under the ter
Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling
KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea.
It will house a neutrino telescope comprising hundreds of networked moorings — detection units
or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated
by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings
typically used for oceanography, several key features of the KM3NeT string are different: the
instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema®
ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper
wires for data and power transmission, respectively, runs along the full length of the mooring. Also,
compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in
Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for
support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period
of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings,
a custom-made, fast deployment method was designed. Despite the length of several hundreds of
metres, the slim design of the string allows it to be compacted into a small, re-usable spherical
launching vehicle instead of deploying the mooring weight down from a surface vessel. After
being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle
rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater
self-unrolling are detailed in this paper.French National Research Agency (ANR)
ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)European Union (EU)Institut Universitaire de France (IUF)LabEx UnivEarthS
ANR-10-LABX-0023
ANR-18-IDEX-0001Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia
FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MUR), PRIN Italy
NAT-NET 2017W4HA7SMinistry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO)
Netherlands GovernmentNational Science Center, Poland
National Science Centre, Poland
2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovación, Investigación y Universidades (MCIU): Programa Estatal de Generación de Conocimiento (MCIU/FEDER)
PGC2018-096663-B-C41
PGC2018-096663-B-A-C42
PGC2018-096663-B-BC43
PGC2018-096663-B-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucía
SOMM17/6104/UGRGeneralitat Valenciana
GRISOLIA/2018/119
CIDEGENT/2018/034La Caixa Foundation
LCF/BQ/IN17/11620019EU: MSC program, Spain
71367
Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units: The KM3NeT Collaboration
KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV–PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232–3386 m seawater depth is obtained
- …
