223 research outputs found

    Upper limits for undetected trace species in the stratosphere of Titan

    Full text link
    In this paper we describe a first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25{\deg}S and 75{\deg}N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal.Comment: 11 pages plus 6 figure file

    A Time-Dependent Radiative Model of HD209458b

    Get PDF
    We present a time-dependent radiative model of the atmosphere of HD209458b and investigate its thermal structure and chemical composition. In a first step, the stellar heating profile and radiative timescales were calculated under planet-averaged insolation conditions. We find that 99.99% of the incoming stellar flux has been absorbed before reaching the 7 bar level. Stellar photons cannot therefore penetrate deeply enough to explain the large radius of the planet. We derive a radiative time constant which increases with depth and reaches about 8 hr at 0.1 bar and 2.3 days at 1 bar. Time-dependent temperature profiles were also calculated, in the limit of a zonal wind that is independent on height (i.e. solid-body rotation) and constant absorption coefficients. We predict day-night variations of the effective temperature of \~600 K, for an equatorial rotation rate of 1 km/s, in good agreement with the predictions by Showman &Guillot (2002). This rotation rate yields day-to-night temperature variations in excess of 600 K above the 0.1-bar level. These variations rapidly decrease with depth below the 1-bar level and become negligible below the ~5--bar level for rotation rates of at least 0.5 km/s. At high altitudes (mbar pressures or less), the night temperatures are low enough to allow sodium to condense into Na2S. Synthetic transit spectra of the visible Na doublet show a much weaker sodium absorption on the morning limb than on the evening limb. The calculated dimming of the sodium feature during planetary transites agrees with the value reported by Charbonneau et al. (2002).Comment: 9 pages, 8 figures, replaced with the revised versio

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Access of energetic particles to Titan's exobase: a study of Cassini's T9 flyby

    Get PDF
    We study how the local electromagnetic disturbances introduced by Titan affect the ionization rates of the atmosphere. For this, we model the precipitation of energetic particles, specifically hydrogen and oxygen ions with energies between 1 keV and 1 MeV, into Titan's exobase for the specific magnetospheric configuration of the T9 flyby. For the study, a particle tracing software package is used which consists of an integration of the single particle Lorentz force equation using a 4th order Runge-Kutta numerical method. For the electromagnetic disturbances, the output of the A.I.K.E.F. hybrid code (kinetic ions, fluid electrons) is used, allowing the possibility of analyzing the disturbances and asymmetries in the access of energetic particles originated by their large gyroradii. By combining these methods, 2D maps showing the access of each set of particles were produced. We show that the access of different particles is largely dominated by their gyroradii, with the complexity of the maps increasing with decreasing gyroradius, due to the larger effect that local disturbances introduced by the presence of the moon have in the trajectory of the particles with lower energies. We also show that for particles with gyroradii much larger than the moon's radius, simpler descriptions of the electromagnetic environment can reproduce similar results to those obtained when using the full hybrid simulation description, with simple north-south fields being sufficient to reproduce the hybrid code results for O+ ions with energies larger than 10 keV but not enough to reproduce those for H+H+ ions at any of the energies covered in the present study. Finally, by combining the maps created with upstream plasma flow measurements by the MIMI/CHEMS instrument, we are able to estimate normalized fluxes arriving at different selected positions of the moon's exobase. We then use these fluxes to calculate energy deposition and non-dissociative N2 ionization rates for precipitating O+O+ and H+H+ ions and find differences in the ion production rates of up to almost 80% at the selected positions. All these results combined show that the electromagnetic field disturbances present in the vicinity of Titan significantly affect the contribution of energetic ions to local ionization profiles

    The habitability of Proxima Centauri b II. Possible climates and observability

    Get PDF
    International audienceRadial velocity monitoring has found the signature of a Msini=1.3M \sin i = 1.3~M_\oplus planet located within the Habitable Zone of Proxima Centauri, (Anglada-Escud\'e et al. 2016). Despite a hotter past and an active host star the planet Proxima~b could have retained enough volatiles to sustain surface habitability (Ribas et al. 2016). Here we use a 3D Global Climate Model to simulate Proxima b's atmosphere and water cycle for its two likely rotation modes (1:1 and 3:2 resonances) while varying the unconstrained surface water inventory and atmospheric greenhouse effect. We find that a broad range of atmospheric compositions can allow surface liquid water. On a tidally-locked planet with a surface water inventory larger than 0.6 Earth ocean, liquid water is always present, at least in the substellar region. Liquid water covers the whole planet for CO2_2 partial pressures 1\gtrsim 1~bar. For smaller water inventories, water can be trapped on the night side, forming either glaciers or lakes, depending on the amount of greenhouse gases. With a non-synchronous rotation, a minimum CO2_2 pressure is required to avoid falling into a completely frozen snowball state if water is abundant. If the planet is dryer, \sim0.5~bar of CO2_2 would suffice to prevent the trapping of any arbitrary small water inventory into polar ice caps. More generally, any low-obliquity planet within the classical habitable zone of its star should be in one of the climate regimes discussed here. We use our GCM to produce reflection/emission spectra and phase curves. We find that atmospheric characterization will be possible by direct imaging with forthcoming large telescopes thanks to an angular separation of 7λ/D7 \lambda/D at 1~μ\mum (with the E-ELT) and a contrast of 107\sim 10^{-7}. The magnitude of the planet will allow for high-resolution spectroscopy and the search for molecular signatures

    NEDA—NEutron Detector Array

    Get PDF
    The NEutron Detector Array, NEDA, will form the next generation neutron detection system that has been designed to be operated in conjunction with γ-ray arrays, such as the tracking-array AGATA, to aid nuclear spectroscopy studies. NEDA has been designed to be a versatile device, with high-detection efficiency, excellent neutron-γ discrimination, and high rate capabilities. It will be employed in physics campaigns in order to maximise the scientific output, making use of the different stable and radioactive ion beams available in Europe. The first implementation of the neutron detector array NEDA with AGATA 1π was realised at GANIL. This manuscript reviews the various aspects of NEDA

    Simultaneous, Multi-Wavelength Variability Characterization of the Free-Floating Planetary Mass Object PSO J318.5-22

    Get PDF
    We present simultaneous HST WFC3 + Spitzer IRAC variability monitoring for the highly-variable young (\sim20 Myr) planetary-mass object PSO J318.5-22. Our simultaneous HST + Spitzer observations covered \sim2 rotation periods with Spitzer and most of a rotation period with HST. We derive a period of 8.6±\pm0.1 hours from the Spitzer lightcurve. Combining this period with the measured vsiniv sin i for this object, we find an inclination of 56.2±8.1\pm 8.1^{\circ}. We measure peak-to-trough variability amplitudes of 3.4±\pm0.1%\% for Spitzer Channel 2 and 4.4 - 5.8%\% (typical 68%\% confidence errors of \sim0.3%\%) in the near-IR bands (1.07-1.67 μ\mum) covered by the WFC3 G141 prism -- the mid-IR variability amplitude for PSO J318.5-22 one of the highest variability amplitudes measured in the mid-IR for any brown dwarf or planetary mass object. Additionally, we detect phase offsets ranging from 200--210^{\circ} (typical error of \sim4^{\circ}) between synthesized near-IR lightcurves and the Spitzer mid-IR lightcurve, likely indicating depth-dependent longitudinal atmospheric structure in this atmosphere. The detection of similar variability amplitudes in wide spectral bands relative to absorption features suggests that the driver of the variability may be inhomogeneous clouds (perhaps a patchy haze layer over thick clouds), as opposed to hot spots or compositional inhomogeneities at the top-of-atmosphere level.Comment: 48 pages, 22 figures, accepted to A
    corecore