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ABSTRACT

Radial velocity monitoring has found the signature of a M sin i = 1.3 M⊕ planet located within the habitable zone (HZ) of Proxima
Centauri. Despite a hotter past and an active host star, the planet Proxima b could have retained enough volatiles to sustain surface
habitability. Here we use a 3D Global Climate Model (GCM) to simulate the atmosphere and water cycle of Proxima b for its two
likely rotation modes (1:1 and 3:2 spin-orbit resonances), while varying the unconstrained surface water inventory and atmospheric
greenhouse effect.
Any low-obliquity, low-eccentricity planet within the HZ of its star should be in one of the climate regimes discussed here. We find
that a broad range of atmospheric compositions allow surface liquid water. On a tidally locked planet with sufficient surface water
inventory, liquid water is always present, at least in the substellar region. With a non-synchronous rotation, this requires a minimum
greenhouse warming (∼10 mbar of CO2 and 1 bar of N2). If the planet is dryer, ∼0.5 bar or 1.5 bars of CO2 (for asynchronous or
synchronous rotation, respectively) suffice to prevent the trapping of any arbitrary, small water inventory into polar or nightside ice
caps.
We produce reflection and emission spectra and phase curves for the simulated climates. We find that atmospheric characterization
will be possible via direct imaging with forthcoming large telescopes. The angular separation of 7λ/D at 1 µm (with the E-ELT) and
a contrast of ∼10−7 will enable high-resolution spectroscopy and the search for molecular signatures, including H2O, O2, and CO2.
The observation of thermal phase curves can be attempted with the James Webb Space Telescope, thanks to a contrast of 2 × 10−5

at 10 µm. Proxima b will also be an exceptional target for future IR interferometers. Within a decade it will be possible to image
Proxima b and possibly determine whether the surface of this exoplanet is habitable.

Key words. Stars: individual: Proxima Cen — Planets and satellites:individual: Proxima b — Planets and satellites: atmospheres —
Planets and satellites: terrestrial planets — Planets and satellites: detection — Astrobiology

1. Introduction

Proxima Centauri b, recently discovered by Anglada-Escudé
et al. (2016), is not only the closest known extrasolar planet but
also the closest potentially habitable terrestrial world, located at
only ∼ 4.2 light years from the Earth (Van Leeuwen 2007).

Proxima Centauri b, also called Proxima b, receives a stellar
flux of ∼ 950 W m−2 (0.65 − 0.7 S ⊕ at 0.05 AU based on
the bolometric luminosity from Demory et al. 2009; Boyajian
et al. 2012); this places Proxima b undoubtedly well within the
so-called habitable zone (HZ) of its host star (M? = 0.123 M�),
which is defined as the range of orbital distances within which a
planet can possibly maintain liquid water on its surface (Kasting
et al. 1993; Kopparapu et al. 2013; Leconte et al. 2013a; Yang
et al. 2013; Kopparapu et al. 2014, 2016). Indeed, for the
effective temperature of Proxima (3050 K; Anglada-Escudé et al.
2016) climate models locate the inner edge between 0.9 and
1.5 S ⊕, depending on the planet rotation (Kopparapu et al.
2016), and the outer edge at ∼ 0.2 S ⊕ (Kopparapu et al.
2013). Nonetheless, surface habitability requires the planet to

be endowed with a sufficient amount of water and atmospheric
gases able to maintain a surface pressure and possibly a
greenhouse effect (typically with CO2).

Quantifying this last statement is the main goal of this study.
While most previous studies on climate and habitability focused
on estimating the edges of the habitable zone, here we rather
investigate the variety of necessary atmospheric compositions
and global water content to ensure surface liquid water. Using
the limited amount of information available on Proxima b, we
can already provide some constraints on its possible climate
regimes as a function of a key parameter: the volatile inventory,
which includes the amount of available water above the surface
and the amount and type of greenhouse and background gases
in the atmosphere. Investigating extreme inventory scenarios is
especially important in our specific case because Proxima is
an active M dwarf. This means that the atmospheric content of
the planet has probably been dramatically influenced by various
types of escape, especially during the pre-main-sequence phase
in which the planet underwent a runaway greenhouse phase.

Article number, page 1 of 31

Article published by EDP Sciences, to be cited as http://dx.doi.org/10.1051/0004-6361/201629577

http://publications.edpsciences.org/
http://dx.doi.org/10.1051/0004-6361/201629577


A&A proofs: manuscript no. 29577_am_RESUB

See the companion paper by Ribas et al. (2016) for a detailed
discussion.

Assuming a circular orbit, Proxima b should be in
synchronous rotation with permanent dayside and nightside (1:1
resonance). However, Ribas et al. (2016) showed that the orbit
of Proxima b might not have had time to circularize and that
an eccentricity above ∼0.06 would be sufficient to capture the
planet into a 3:2 spin-orbit resonance similar to Mercury. At
higher eccentricities, higher resonances such as the 2:1 become
possible as well. The climate on a tidally locked (synchronous)
planet can dramatically differ from the asynchronous case. For a
given volatile inventory, we will thus systematically try to infer
the difference in behavior between a planet in a 1:1 and 3:2
resonance. The choice of the specific resonance order, however,
has a much more subtle impact on the climate, so that the
investigations of higher order resonances will be left for further
studies.

Guided by various works on previously observed terrestrial
exoplanets (Wordsworth et al. 2011; Pierrehumbert 2011;
Leconte et al. 2013b), this study thus explores the climate
regimes available for Proxima b as a function of its spin state,
atmospheric composition and thickness, and total amount of
water available in the system. For this purpose, we use the LMD
Generic Global Climate Model whose implementation for this
specific study is detailed in Sect. 2.

For further reference, Figure 1 summarizes this attempt to
quantify the possible climates of Proxima b for the two most
likely spin states (1:1 and 3:2 spin-orbit resonance), as a function
of the total water inventory and the greenhouse gas content
(CO2 here). The total water inventory is expressed here in global
equivalent layer (GEL), which is the globally averaged depth of
the layer that would result from putting all the available water in
the system at the surface in a liquid phase. Figure 1 serves as a
guide throughout the various sections of this work.

To add a twist, Proxima b, as it is probably our closest
neighbor, should be amenable to further characterization by
direct imaging in the near future. With its short orbital period,
multi-epoch imaging could then rapidly yield a visible and
NIR phase curve of the planet. It could be one of our first
opportunities to characterize a temperate terrestrial planet and
its climate. We thus put a particular emphasis on quantifying
observable signatures for the various type of atmospheres
discussed here.

After presenting the details about the physical
parameterizations used to model Proxima b, sections 3 to
5 contain our major findings about the climate regimes
achievable on Proxima b. They are ordered following the global
water inventory available from completely dry (Sect. 3), water
limited planets (Sect. 4) to water-rich worlds (Sect. 5). Finally,
in Sect. 6, we highlight potential observable signatures of these
various climate regimes, and discuss how direct imaging with
upcoming facilities could help us to constrain the actual climate
of Proxima b.

2. Method - The LMD Generic Global Climate Model

This model originally derives from the LMDz three-dimensional
Earth Global Climate Model (Hourdin et al. 2006), which solves
the primitive equations of geophysical fluid dynamics using a
finite difference dynamical core on an Arakawa C grid. The
same model has been used to study very diverse atmospheres
of terrestrial planets, ranging from (1) low irradiated planets
as early Mars (Forget et al. 2013; Wordsworth et al. 2013,
2015; Turbet et al. 2016b), Archean Earth (Charnay et al.

2013), snowball Earth-like planets (Turbet et al. 2016a), or
exoplanets like Gliese 581d (Wordsworth et al. 2011); (2) planets
receiving stellar flux similar to the Earth (Bolmont et al. 2016a,
this paper); and (3) highly irradiated planets such as future
Earth (Leconte et al. 2013a) or tidally locked exoplanets like
Gliese 581c / HD85512b (Leconte et al. 2013b).

Our simulations were designed to represent the
characteristics of Proxima b, which include the stellar flux
it receives (956 W m−2 / 0.7 S ⊕), its radius (7160 km / 1.1 R⊕)
and gravity field (10.9 m s−2) which are calculated assuming a
mass of 1.4 M⊕ (Anglada-Escudé et al. 2016) and the density
of Earth (5500 kg m−3); these characteristics also include a
flat topography and various rotation speeds, namely 6.3·10−6,
9.7·10−6, and 1.3·10−5 rad s−1, for 1:1, 3:2, and 2:1 orbital
resonances, respectively. All the simulations were performed
assuming a circular orbit. Even if the maximum possible
eccentricity of Proxima b is 0.35 (Anglada-Escudé et al. 2016),
for dynamical reasons (Ribas et al. 2016) the upper limit of 0.1
would be more realistic. Therefore, the mean flux approximation
seems reasonable (Bolmont et al. 2016a) here. We also worked
with an obliquity of 0◦, as expected for such a planet influenced
by gravitational tides (see Ribas et al. 2016 for more details).

The simulations presented in this paper were all carried
out at a horizontal resolution of 64 × 48 (e.g., 5.6 ◦ × 3.8◦)
in longitude × latitude. In the vertical direction, the
model is composed of 26 distinct atmospheric layers that
were built using hybrid σ coordinates and 18 soil layers.
These 18 layers are designed to represent either a rocky
ground (thermal inertia Irock = 1000 J m−2 K−1 s−

1
2 ), an

icy ground (Iice = 2000 J m−2 K−1 s−
1
2 ) or an ocean

(Iocean = 20000 J m−2 K−1 s−
1
2 to take into account the

vertical mixing) depending on the assumed surface. Oceanic
heat transport is not included in this study. Each of theses
configurations is able to capture the diurnal waves for
the non-synchronous orbital configurations. The planet day
maximum explored duration is 22.4 Earth days for the 3:2
resonance orbital configuration. Table 1 summarizes all the
parameterizations adopted in this work.

The GCM includes an up-to-date generalized radiative
transfer (Rothman et al. 2009; Wordsworth et al. 2010; Richard
et al. 2012) for variable gaseous atmospheric compositions made
of various cocktails of CO2, N2, and H2O, using the correlated-k
method (Fu & Liou 1992; Eymet et al. 2016). Processes such
as the radiative effect of clouds or Rayleigh scattering are
taken into account. The emission spectrum of Proxima Centauri
(see Figure 2, top panel) was computed using the synthetic
BT-Settl spectrum1 (Rajpurohit et al. 2013) of a M5.5 star with
Teff = 3000 K, g = 103 m s−2 and [M/H] = 0 dex.

Around a red dwarf like Proxima b, the bolometric albedo
of ice and snow is significantly reduced (Joshi & Haberle 2012)
because of the shape of its reflectance spectrum. To account for
this effect, the GCM computes the bolometric albedo of ice from
a simplified law of the spectral albedo of ice and snow calibrated
to obtain an ice and snow bolometric albedo of 0.55 around a
Sun-like star (Warren & Wiscombe 1980; Warren 1984; Joshi &
Haberle 2012; see bottom panel of Figure 2). Around Proxima b,
our average bolometric albedo for ice and snow is 0.27. Yet,
because of the varying spectral transmission of the atmosphere
(due to variable water vapor and clouds), the bolometric albedo
can locally reach values as high as 0.55.

Melting, freezing, condensation, evaporation, sublimation,
and precipitation of H2O are included in the model. Similarly,
1 Downloaded from https://phoenix.ens-lyon.fr

Article number, page 2 of 31



Martin Turbet et al.: The habitability of Proxima Centauri b

Fig. 1. Schematic diagrams of the possible climate regimes reached as function of the CO2 atmospheric content (in bar) and the H2O content
available at the surface (in global equivalent layer (GEL), in meters). The top and bottom panels describe the case of synchronous and asynchronous
spin states, respectively. The red stars indicate the parts of the diagram that have been probed in this work using GCM simulations. The stars that
lie on top of the left y-axis correspond to the case of a dry surface and atmosphere while those on the right y-axis consider planets completely
covered by water. The presence of a background gas such as N2 could significantly modify the lower part of the diagram (pCO2 < 1 bar typically).
It would favor the heat redistribution, which in turn could (1) prevent the CO2 atmospheric collapse and (2) reduce the amount of ice possibly
trapped in water ice glaciers.
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Table 1. Adopted stellar and planetary characteristics of the Proxima system. We also show the adopted parameters for various GCM
parametrizations.

Parameter Value Unit
L? 0.0017 L�
Teff 3000 K
Age 4.8 Gyr
Mp sin i 1.27 M⊕
Mp 1.4 M⊕
Rp 1.1 R⊕
Semi-major axis 0.0485 AU
S p 0.7 S ⊕
Spin-orbit resonance 1:1 / 3:2 / 2:1
Ωp 6.3·10−6 / 9.7·10−6 / 1.3·10−5 rad s−1

Stellar Day ∞ / 22.4 / 11.2 Earth days
Obliquity 0 ◦

Eccentricity 0
Surface types Rock / Liquid water / Ice
Thermal inertia 1000 / 20000 / 2000 J m−2 K−1 s−

1
2

Albedo 0.2 / 0.07 / wavelength-dependant (Figure 2)

Notes. The values for the stellar and planetary parameters are derived from Anglada-Escudé et al. (2016).

Fig. 2. Top panel: Synthetic emission spectrum of a Proxima
Centauri-like star (normalized by the peak value) used as input for the
GCM calculations. For comparison, we put the spectrum of the Sun as
usually computed in the LMD-GCM radiative transfer. Bottom panel:
Spectral distribution of snow and ice surface albedo as computed in the
GCM. Integrated snow and ice albedo values are 0.55 and 0.27 for the
Sun and Proxima Centauri, respectively.

we take the possible condensation and sublimation of CO2
in the atmosphere (and on the surface) into account, but not
the radiative effect of CO2 ice clouds because their scattering
greenhouse effect (Forget & Pierrehumbert 1997) should not
exceed 10 Kelvins in most cases (Forget et al. 2013; Kitzmann
2016).

3. The case of a completely dry planet

Because Proxima b probably lost a massive amount of water
during its early evolution around a pre-main sequence, active

star (Ribas et al. 2016), we need to consider the possibility that
the planet may now be rather dry. When water is in very limited
supplies, its state is mostly determined by the temperatures of
the coldest regions of the surface, the so-called cold traps (Abe
et al. 2011; Leconte et al. 2013b; see next section).

To get some insight into the location and properties of these
cold traps, we first consider the simple case of a completely
dry planet. In this section, we focus on the greenhouse gas
content needed to prevent the formation of a cold trap where
ice could accumulate. Necessary conditions for the atmosphere
to be stable are also discussed.

To evaluate this situation, we performed GCM simulations
of rocky planets (surface albedo of 0.2) enveloped by pure CO2
atmospheres with pressures ranging from 0.1 bar to 20 bars.
Around a red dwarf like Proxima, CO2 is a powerful greenhouse
gas because it has stronger absorption lines in the near-infrared
than in the visible and it does not contribute much to the stellar
reflection by the Rayleigh scattering.

Figure 3 shows that the temperatures are very high across
the surface even for CO2 atmospheres of moderate thickness,
and despite the low insolation compared to Earth (S p = 0.7 S ⊕).
In fact, GCM simulations show that, whatever the atmospheric
pressure or the orbital configuration, surface temperatures are
always greater than 273 K somewhere, although it is not the most
relevant factor for the stability of liquid water (and therefore
habitability), as indicated by the case of current day Mars (Read
& Lewis 2004; Millour et al. 2015).

3.1. Synchronous rotation

For the synchronous orbit case, surface pressures of 6 bars of
CO2 are required to warm the entire surface above the melting
point of water. However, the surface temperature contrasts can
be very high for lower atmospheric content. For example, as
much as 150 K difference between the substellar and the coldest
points in the 1 bar pure CO2 simulation (see Figure 3, left
bottom corner). In the synchronous configuration, the planet has
two cold points located at symmetric positions around longitude
±180◦ and latitude ±60◦. The existence of these two cold traps
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persists in all the tidally locked simulations (dry, wet, down to
1 bar thin or up to 20 bars thick atmospheres, etc.) explored
in this work, but their position can slightly vary, as a result of
planetary-scale equatorial Kelvin and Rossby wave interactions
(Showman & Polvani 2011). In particular, our simulations show
that thick atmospheres tend to move these two cold gyres toward
the west direction and higher latitudes (see also Figure 6).

In addition, GCM simulations tell us that CO2-dominated
atmospheres that are thinner than ∼ 1 bar are not stable at all
because the surface temperature at the two cold points is lower
than the temperature of condensation of CO2 (see Figure 3,
third row of left column, blue dashed line). We identified here
a positive feedback: when CO2 starts to collapse because of the
decrease in the total gas content, the heat redistribution becomes
less efficient, which increases the temperature contrast between
the substellar point and the gyres and therefore favors the CO2
condensation at the cold points. In this case, the atmosphere
would inevitably collapse until reaching an extremely low CO2
atmospheric content in a regime of temperatures and pressures
that are not well described by our model parametrizations.

In the process, CO2 ice could be trapped for eternity, but also
form glaciers that could flow efficiently to warm regions and
resupply the atmosphere in gaseous CO2 continuously (Turbet
et al. 2016a). Moreover, the scattering greenhouse effect of CO2
ice clouds (Forget & Pierrehumbert 1997; Turbet et al. 2016a)
that would form preferentially in the coldest regions of the planet
could drastically limit the CO2 atmospheric collapse.

In any case, this shows that having enough atmospheric
background gas (main agent of the heat redistribution +
additional pressure broadening) may favor the stability of the
atmosphere and therefore the habitability of Proxima b. For
example, for an atmosphere of 1 bar of N2 – as could be
more or less expected on an Earth-sized planet of Rp ∼ 1.1 R⊕
(Kopparapu et al. 2014) – and 376 ppm of CO2, the dayside has
mean surface temperatures above 273 K and the atmosphere does
not collapse (see Figure 3, left bottom corner).

3.2. Asynchronous rotation

For non-synchronous cases, the substellar temperature "eye"
pattern disappears and the atmospheric pressure at which surface
temperatures are all strictly above 273 K is slightly lower
because the stellar radiation is now distributed equally among the
longitudes. For the 3:2 resonance case, Figure 3 shows that this
condition is reached for atmospheric pressures greater or equal
to 4 bars. 3:2 and 2:1 spin-orbit resonance configurations do
not exhibit significant differences in term of surface temperature
maps. The shorter stellar day in 2:1 (11.2 Earth days compared
to 22.4), which weakens day and night contrasts is compensated
by the higher rotation rate, which weakens equator-to-pole heat
redistribution (Wordsworth et al. 2011; Kaspi & Showman
2015).

Another crucial consequence of the efficiency of the heat
redistribution relates to the CO2 collapse, which occurs now
at CO2 atmospheric pressure as low as 0.1 bar in the 3:2
orbital resonance GCM simulations (this is a factor 10 lower
than for the tidally locked configuration). Therefore, in such a
configuration, asynchronous rotation would favor the stability of
the atmosphere and thus the habitability of Proxima b.

4. Limited water reservoir

Another possibility is that Proxima b may have a limited, but
non-zero, water inventory. In this case, the question is to know

where this water is stored. To answer that question, Sect. 4.1
first makes an attempt at quantifying how much water vapor
can be stored in the atmosphere without ever condensing at the
surface. Then, in Sect. 4.2, we discuss what happens to the water
reservoir when it condenses at the surface. In particular, we try to
estimate how much water can be stored before it forms planetary
scale oceans (this is discussed in Sect. 5).

4.1. Maximum amount of water stored in the atmosphere

The amount of water that can be maintained in a planetary
atmosphere before it starts to condense at the surface depends
primarily on the atmospheric temperatures. For example, Venus
has a water GEL of ∼2 cm (Bougher et al. 1997; Bézard et al.
2009) in its atmosphere that may form liquid water droplets in
the atmosphere but never condenses at the surface. But it could
store much more.

To quantify this possibility in the case of Proxima b, we
perform a simulation with a 4 bars CO2 dominated atmosphere,
for a synchronous rotation, in aquaplanet mode (static ocean
model, I = 20000 J m−2 K−1 s−

1
2 , surface albedo of 0.07), and

until equilibrium is reached (after ∼ 1000 orbits). Hereafter,
water vapor is always included in the atmospheric calculations,
expect when otherwise specified. When referring to a specific
atmospheric composition, only the amount of background gases
is specified.

Suddenly, we change the properties of the planet: first, we
remove all the water available at the surface and, second, we use
a rocky surface (I = 1000 J m−2 K−1 s−

1
2 , surface albedo of 0.2),

in place of the removed water at the surface. Then, at every orbit,
we remove all the extra water that condenses from the planet.
We repeat the process until precipitations completely stop for 50
consecutive orbits. Up to 45 cm GEL of water could be trapped
in the atmosphere before it starts to condense (not shown). In
this case, surface temperatures reach 370-450 K, which is a 45 K
increase on average compared to the aquaplanet simulation.

Repeating this procedure for atmospheric pressures of 1 bar,
2 bars, and 4 bars, we obtained maximum amounts of water
vapor (before it condenses permanently at the surface) of 1 cm,
10 cm, and 45 cm GEL. The corresponding simulations were
reported in Figure 1 and define the black curve separating the
region “All water in vapor state” from the rest of the diagram.
The same GCM simulations, when taking the greenhouse effect
of water vapor into account, show that surface pressures as low
as 1.5 bars (and even lower for the 3:2 orbital resonance) are now
sufficient to get surface temperatures above 273 K everywhere
on the planet.

Thick, Venus-like atmospheres (pCO2 typically > 10 bars)
could potentially store very large amounts of water, although
we did not perform the necessary simulations; these simulations
would require a dedicated radiative transfer model. Interestingly,
for atmospheres with a huge greenhouse effect, there is no reason
for the partial pressure of water not to exceed that of the critical
point. In this case, the temperature would also exceed the critical
point so that discussing the transition to a liquid phase at the
surface would not be very meaningful. The habitability of such
environment seems largely unexplored

4.2. Maximum amount of water stored on the surface

4.2.1. Cold climates: Limits on glaciers.

As soon as water is available in sufficient amounts, which
depends on the atmospheric gas content (as detailed above),
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Fig. 3. Biennal mean surface temperatures of completely dry atmospheres, for 2 orbital configurations (synchronous and 3:2 orbital resonance)
and 4 atmospheric compositions and pressures (6 bars of pure CO2, 4 bars of pure CO2, 1 bar of pure CO2 and 1 bar of N2 + 376 ppm of CO2
– Earth-like atmosphere). The solid black line contour corresponds to the 273.15 K isotherm; the dashed blue line contour indicates the regions
where the atmospheric CO2 collapses permanently into CO2 ice deposits. The 1 bar pure CO2 (synchronous) simulation is not stable in the long
term since CO2 would collapse at the two cold points.

it can start to condense permanently at the surface. For
a synchronous rotation, CO2-dominated atmospheres with
pressure typically lower than 1.5 bars exhibit surface
temperatures that are lower than 273 K at their coldest points.
Therefore, all the extra water available at the surface gets

trapped at the two cold gyres forming inevitably stable water
ice deposits. The range of water inventory for which such
unhabitable climate regimes subsist depends on the atmospheric
gas content and composition, but also possibly on the internal
heat flux of Proxima Centauri b.
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As the water inventory increases, the ice deposits thicken and
start to form water ice glaciers that can at some point flow from
the coldest regions of the planet toward warmer locations. There
are in fact two distinct processes that can limit the growth of
water ice glaciers (Leconte et al. 2013b; Menou 2013):

1. The gravity pushes the glaciers to flow in the warm
regions where ice can be either sublimated or melted. This
limit depends mostly on the gravity of the planet and the
mechanical properties of water ice (e.g., viscosity).

2. The internal heat flux of the planet causes the basal melting
of the water ice glaciers. In such conditions, glaciers would
slip and flow to warmer regions where, once again, ice could
melt and sublimate. This limit depends primarily on the
geothermal heat flux of the planet and the thermodynamical
properties of water ice (e.g., thermal conductivity).

Menou (2013) has shown that for tidally locked terrestrial
planets with Earth-like characteristics, the basal melting should
be the condition that limits the thickness of the water ice glaciers.
He finds maximum global equivalent ice thicknesses typically
ranging from 320 m (for a 1 bar N2, 3.6 % CO2 atmosphere) and
770 m (0.3 bar N2, 360 ppm CO2 atmosphere).

In the same vein, we compute the maximum ice thickness
before basal melting for four of our dry GCM simulations from
Fig. 3. We use two distinct atmospheric compositions: 1 bar
is pure CO2 atmosphere; below that, the CO2 can collapse
permanently for synchronous rotation; 1 bar of N2 + 376 ppm
of CO2), and two orbital configurations (synchronous and 3:2
resonance). This thickness, hmax

ice , is given by (Abbot & Switzer
2011)

hmax
ice =

A
Fgeo

ln
(

Tmelt

Tsurf

)
, (1)

where Fgeo is the internal heat flux and Tmelt is the melting
temperature of ice at the base of the glacier. As the latter is a
function of the pressure below the ice, it implicitly depends on
hmax

ice so that the above equation must be solved numerically, once
the local surface temperature is known (Leconte et al. 2013b; see
appendix A for details). This temperature is taken from the GCM
outputs (see the third and fourth rows of Figure 3).

Assuming that it scales roughly with M1/2
p (Abbot & Switzer

2011), the geothermal flux can be extrapolated based on the
Earth value (∼90 mW m−2; Davies & Davies 2010), yielding
Fgeo = 110 mW m−2. Of course, this estimate holds only
because the Earth and Proxima are similar in age (Bazot et al.
2016). However, tidal heating could also take place. Ribas et al.
(2016) showed that an initial eccentricity would not be damped
significantly over the lifetime of the system. They also argue
that, assuming the planet is alone in the system, it would be
difficult to excite the orbital eccentricity above 0.1. This would
correspond to an extra tidal heat flux of ∼ 70 mW m−2 for
a tidal dissipation ten times lower than Earth. Therefore, for
non-synchronous orbits, we arbitrarily set the geothermal heat
flux Fgeo to be equal to 110+70 = 180 mW m−2. An upper limit
on the tidal heating can also be derived from observations of
Proxima b that put an upper limit of 0.35 on the eccentricity
of the planet (Anglada-Escudé et al. 2016). This configuration
produces a tidal dissipation heat flux of ∼ 2.5 W m−2, which is
similar to Io (Spencer et al. 2000). Yet, in this case, most of the
heat would probably be extracted through convection processes
(e.g., volcanism) instead of conduction, as on Io. Thus only a
(unknown) fraction of this flux should be used in Eq. (1). We
thus decided to use a geothermal flux of 180 mW m−2 for our

baseline scenario, but we note that an order of magnitude change
could be possible.

Figure 4 shows the water ice maximum thickness maps
derived for our four simulations. After spatial averaging, this
yields maximum equivalent global thicknesses of ice of 940 m
and 115 m for the 1 bar pure CO2 atmosphere (respectively for
sync. and async. rotations) and of 1650 m and 490 m for an
Earth-like atmosphere.

On the one hand, very large amounts of ice (up to 61 %
of Earth ocean content in the Earth-like atmosphere config.)
can be trapped in the tidally locked case due to the high
contrasts of temperature throughout the surface. This is not
an upper limit. Thinner atmospheres (due to CO2 collapse for
example, see section 3) could entail much more extreme surface
temperature contrasts. Such a Pluto-like planet could potentially
trap tremendous amounts of water in the form of ice.

On the other hand, much more limited quantities of ice can
be trapped in asynchronous simulations due to both a better
heat redistribution and a higher geothermal heat flux. For an
eccentricity of 0.35, the amount of trapped ice would be probably
much less than 115 m and 490 m because of the increased
internal heat flux.

We mention that these GCM simulations were performed
with a dry atmosphere; the lack of water vapor, a powerful
greenhouse gas, leads to an overestimate of the amount of ice
possibly trapped.

Eventually, once the water ice glaciers start to spill, they can
possibly melt at their edge, either on dayside or nightside. It has
been shown by Leconte et al. (2013b) that such configuration
could be long lived. We roughly put in Figure 1 (hatched region)
the range of CO2 and water inventory for which such scenario
would happen. This is an exotic form of habitability.

4.2.2. Warm climates: Appearance of lakes

As discussed in Sect. 3, if the greenhouse effect of the
atmosphere is sufficient, the coldest temperatures at the surface
are above the freezing point of water. Although we might
intuitively think that this situation is very different from above,
from the point of view of the atmosphere, it is not. The
atmosphere always tends to transport water from the hottest to
the coldest regions. The fact that the cold-trap temperature is
above the freezing point is irrelevant as long as there is not
enough water at the surface to redistribute water more rapidly
than it is brought in.

Liquid water thus first accumulates around the coldest
regions of the planet. Interestingly, on a synchronous planet,
these are located on the night side where no photons are available
for photosynthesis. If the spin is non-synchronous, the volatiles
would likely first concentrate toward the poles. This seems to be
the case on Titan where methane lakes are mostly seen at high
latitudes (Stofan et al. 2007).

The range of water inventory for which this configuration
(liquid water on nightside) may subsist not only depends on
the water inventory but also on the topography. In the case
of a tidally locked planet, the topography features may not be
randomly distributed because tidal locking could tend to favor
the alignment of large-scale gravitational anomaly (correlated
with topography anomaly) with the star-planet axis. For instance
there is a clear difference between the near side and far side of
the Moon (Zuber et al. 1994), and the deep Sputnik Planum
basin on Pluto is located near the anti-Charon point (Moore
et al. 2016). Thus it is conceivable that Proxima b may have its
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Fig. 4. Maximum ice thickness calculated from 4 completely dry GCM simulations made of 2 different atmospheric compositions (1 bar pure CO2
atmosphere, 1 bar N2-dominated atmosphere with 376 ppm of CO2) and 2 orbital configurations (synchronous and 3:2 resonance). The maximum
ice thickness is calculated from the basal melting condition derived from the mean surface temperature from Figure 3. The internal heat flux is
assumed to be 110 mW m−2 for the synchronous orbit cases and 180 mW m−2 for the asynchronous cases. The global equivalent thickness of ice
is 940 m (1 bar of CO2) and 1650 m (Earth atmosphere) for the synchronous rotation, and 115 m and 490 m for the 3:2 resonance, respectively.
The amount of ice calculated from the 1 bar CO2 simulation is probably a lower estimate since CO2 would collapse, making the cold points even
colder.

largest topographic basin either near the substellar point at the
anti-stellar point.

Interestingly, as the water inventory grows, the response of
the climate (amount of water vapor, atmospheric temperatures,
...) might be significantly different depending on the topography.
Figure 5 illustrates qualitatively the fact that, depending on
the topographic setup (basin at the substellar point, basin
at the anti-stellar point, or no basin at all, i.e., a quasi-flat
configuration), the distribution of water between the surface
and the atmosphere might significantly differ. As significant
amounts of water start to condense at the surface, liquid water
would likely spill toward the main topographic depression of the
surface. If this depression is for example located at the substellar
point, where evaporation rates are the highest, the proportion of
water in the atmosphere given a fixed total water inventory would
be maximum and definitely much higher than in the extremely
opposite case (a basin at the anti-stellar point).

Therefore, it is important to mention that assessing the
proportion of water vapor in the atmosphere of Proxima b might
not be sufficient to get information on the stability and location
of surface liquid water, and vice versa, knowing the exact water
inventory available on Proxima b would not be totally relevant
to deduce its possible climatic regime.

5. Large water reservoir

Despite the large amount of hydrogen that could have escaped
within the lifetime of Proxima b, the quantity of water now

Fig. 5. Qualitative evolution of the amount of water vapor in the
atmosphere as a function of the total water inventory, assuming a
synchronous rotation and a liquid water runoff activated, for three
different scenarios: a quasi-flat topography, a basin at the substellar
point, and a basin at the anti-stellar point. For high pCO2, the range
of water inventory for which the three scenarios diverge would flatten
on a logarithmic scale because potentially high amount of water could
be vaporized.

available on the planet also depends significantly on its initial
water inventory. As argued by Ribas et al. (2016), if Proxima
Centauri b formed beyond the ice line in a similar fashion to
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solar system icy satellites, it could still possess enough water to
be an aquaplanet, the term aquaplanet refering here to a planet
where water is abundant enough to flow efficiently on a planetary
scale. In practice, in our simulations, this means that the surface
acts as an infinite source of water.

In this section, we thus make an attempt at quantifying how
much is enough. Then, we discuss the various climate regimes
available to an aquaplanet and point out the main differences
with the dry case.

5.1. Transition from small to large water inventory

The exact water inventory for which Proxima b would transition
from a land planet (previous section) to an aquaplanet (this
section) is difficult to define. In particular, the nature of the
transition depends of the amount of greenhouse gas in the
atmosphere.

For a low atmospheric greenhouse effect (meaning that
ice is stable somewhere on the planet), there is a bistability
between two possible climate regimes around the transition. To
understand this bistability, we introduce a thought experiment
in which we consider a planet with two very different initial
conditions:

• Case 1: warm- and/or water-rich-start. We assume that the
planet starts with a global ocean, possibly covered by sea ice
wherever cold enough. This experiment has been carried out
by Yang et al. (2014) with a 325 m deep ocean. They showed
that in such a configuration, winds carry sea ice toward hot
regions and the ocean carries heat toward cold regions, so
that an equilibrium can be found with less than 10 m of
sea ice in the coldest regions. They however acknowledge
that the presence of continents could significantly alter this
value. Yang et al. (2014) only looked at a synchronous
planet, but the argument remains qualitatively valid for a
non-synchronous planet, even though numerical values will
surely change significantly.
Therefore, water content as small as ∼ 102 m GEL (and
maybe even lower) is sufficient to maintain aquaplanet
conditions. If water were to be removed or the temperature
decreased, at some point, the oceanic transport would shut
down and the planet would transition to a dry, cold regime
with glaciers.

• Case 2: cold- and/or water-poor-start. As discussed in the
previous section, if the planet started cold or dry enough,
all the water would be trapped in ice caps and glaciers.
Now, we demonstrated earlier that in this state, more than
∼ 103 m GEL of ice could be stored this way. If the
water inventory and/or the temperature were to be increased,
glaciers would progressively spill toward hotter regions.
This state could resist until the oceanic transport becomes
more efficient than the atmospheric transport. After that, an
ocean would accumulate and, in turn, warm the cold regions,
speeding up the transition to the aquaplanet regime.

Therefore, between roughly ∼ 102 and 103 m GEL, two distinct
climate regimes coexist, depending on the history of the planet.
As both the water inventory and the amount of greenhouse gases
play a role, it is even possible for the planet to undergo hysteresis
cycles between the two states. But the mechanism is rather
different from that involved in snowball climates (which will
be discussed later on). Indeed, here, the albedo feedback does
not play a major role. What controls the transition between a
water-rich and warm world toward a dry and cold one is now the
oceanic transport. We note that on a non-synchronous planet, the

upper limit of 103 m GEL would decrease as the cold traps are
less efficient and at the same time, a smaller global ocean might
be needed to efficiently warm the poles.

For warmer climates (in the sense that ice cannot form at
the surface), the transition would happen whenever water were
abundant enough to flow. Topography would thus be the key
parameter (see Sect. 4.2.2).

A third situation can occur when the amount of greenhouse
gases in the atmosphere is such that the partial pressure of water
vapor at the surface can exceed that of the critical point. Then we
expect no transition at all as there is no phase transition between
liquid and gaseous phase above the critical point.

Finally, we note that in any case another transition would
occur at much higher water contents (∼ 105−6 m GEL) when high
pressure ices form.

5.2. Necessary conditions to have surface liquid water

Assuming that Proxima b is in the aquaplanet regime, one may
wonder what the minimal requirement is to maintain liquid water
stable at the surface. Compared to the limited reservoir case,
the requirements are much less stringent. There are two main
reasons for this:

• There is too much water, by definition, for complete
cold-trapping to occur. As a result, the lowest temperature
at the surface is rather irrelevant. Instead, only the highest
temperature matters. And it is much easier to have a planet
with one region above freezing than a planet with no region
below freezing.

• Because water is readily available for evaporation, the
atmosphere, on average, is much closer to saturation
compared to the dry case. As water vapor is a good
greenhouse gas, this usually entails that for a given
background atmosphere, the average surface temperature of
the aquaplanet is higher than its dry counterpart. This can
sometimes be mitigated by the ice albedo effect, but this
effect is extremely weak around red stars such as Proxima
(Joshi & Haberle 2012), especially for synchronous spin
states.

With that in mind, we performed a suite of aquaplanet
simulations with various atmospheric compositions to assert the
likelihood of surface liquid water. The results are shown in
Fig. 6.

5.2.1. Synchronous rotation: Ubiquity of liquid water.

As can be seen on the left column of Figure 6, when
the planet is synchronously rotating, temperatures are always
high enough at the substellar point to have liquid water,
whatever the atmospheric content (pure CO2, Earth-like mixture,
thin, 0.01 bar atmosphere). This would hold even without a
background atmosphere; in this case, the atmosphere would be
composed of water vapor. Indeed, because the substellar point
permanently receives 956 W m−2, it would take a surface bond
albedo of 0.67 to cool this region below the freezing point.
We recover the "Eyeball Earth" regime (Pierrehumbert 2011) or
"Lobster Earth" regime (Hu & Yang 2014) (when deep ocean
circulation is taken into account).

Starting from there, adding greenhouse gases to the
atmosphere only (1) increases the mean surface temperature, (2)
increases the size of the liquid water patch, and (3) reduces the
temperature contrast. Eventually, above some threshold (∼ 1 bar
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Fig. 6. Biennal mean surface temperatures of atmospheres made of a variety of 4 cocktails of N2 and CO2 for 2 orbital configurations (synchronous
and resonance 3:2), assuming planets initially completely covered by liquid water. Solid lines and dashed lines contours correspond to the location
of permanent and seasonal surface liquid water, respectively.

in our simulations), greenhouse is intense enough to deglaciate
the whole planet.

5.2.2. Asynchronous rotation

In a non-synchronous spin-state, on the contrary, surface liquid
water is not always possible. In fact, we recover a situation

very similar to that on Earth: below some threshold amount of
greenhouse gases, the planet falls into a frozen, snowball state.

The reason for this difference with the synchronous state
is that any point at the equator now receives on average
only 1/π of what the substellar point received at any time
in the synchronous configuration. The zero-albedo equilibrium
temperature corresponding to this mean flux is ∼ 270 K.
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Some greenhouse effect is thus necessary to melt the equator,
especially when the albedo and circulation effects are added.

Consequently, four different climate regimes can be reached
on such an asynchronous planet, depending on the greenhouse
gas content. These are depicted on the right column of Fig. 6.
From top to bottom, we have

1. For high CO2 pressures (roughly above a few tenths of
bars) the planet is covered by an ice-free ocean. We did not
perform our simulations on a fine enough grid to be more
precise, but the limit should be lower than 1 bar (see Fig. 6).

2. At lower levels of CO2 (down to ∼0.01 bar with 1 bar N2) the
planet can keep a permanently unfrozen equatorial belt.

3. For lower greenhouse gas contents, diurnal patches of liquid
water lagging behind the substellar point subsist.

4. For thin enough atmospheres, a completely frozen snowball
state ensues.

The 0.01 bar atmosphere (on Figure 6, right column) is
colder than 1 bar because, first, the pressure broadening of
CO2 absorption lines by N2 is drastically reduced; and, second,
the absolute amount of CO2 in the atmosphere is 100 times
lower. Both effects are responsible for the appearance of an
equatorial band of relatively warmer surface temperatures for the
3:2 resonance, 1 bar of N2 (+ 376ppm of CO2) case.

The well known snowball hysteresis could potentially exist
between our states 2, 3, and 4, although the weak ice-albedo
feedback around M dwarfs certainly makes it less likely than
on Earth (Shields et al. 2014). A confirmation of this would
necessitate numerous additional simulations.

5.3. Subsurface oceans?

Whether or not surface liquid water is possible, we now try
to assess the possibility of the presence of a subsurface ocean.
Indeed, if Proxima b has been able to keep a large enough water
inventory, the steady release of geothermal heat entails a rise in
temperature with depth through the ice cap.

To assess a lower limit, we consider our coldest, and only
fully glaciated case (0.01 bar of N2, 376 ppm of CO2 and 3:2
resonance; see Figure 6, right bottom corner). Following a
similar approach to section 4.2.1, we estimate that a subsurface
ocean could exist for water GELs greater than 600 meters
(assuming a geothermal heat flux of 180 mW m−2). Any effect
warming the surface would tend to lower this threshold.

Above such water inventories, Proxima b could thus be at
least considered a class III or IV (if there is enough water to
form high pressure ices) habitable planet (Lammer et al. 2009;
Forget 2013).

5.4. Thin atmospheres: Implication for water loss

When considering water loss around planets in the habitable
zone of small stars, it is tempting to disregard water losses
occurring after the end of the initial runaway greenhouse phase
(which can be important, e.g., Ribas et al. 2016). The reason for
this is that the tropopause usually acts as an efficient cold trap.
The amount of water vapor available for escape in the upper
atmosphere is thus limited by diffusion (Kasting et al. 1993;
Wordsworth & Pierrehumbert 2013).

However, this conclusion is often based on calculation
including a relatively massive, Earth-like background
atmosphere. Because escape may have been very important
for Proxima b in the past, early atmospheric escape may have

removed an important fraction of the background atmosphere
(Ribas et al. 2016). It is thus primordial to infer whether a less
massive background atmosphere is still able to shield water
vapor from escape once the planet has cooled down.

To that purpose, we performed simulations with an
Earth-like atmospheric composition, but a lower background
surface pressure (namely 0.1 and 0.01 bar; bottom panels of
Figure 6). The substellar temperature and vapor mixing ratio
profiles are shown in Figure 7, along with the reference 1 bar
case.

The water vapor mixing ratio increases drastically in the
atmosphere when the background pressure decreases, even at
a given pressure level. This results from the fact that: (1)
when the surface pressure decreases, the surface temperature
cannot change drastically to remain in radiative equilibrium; (2)
throughout the troposphere, the temperature follows a (moist)
adiabat and is thus determined by the ratio of the local to the
surface pressure. At a given pressure level, temperatures in the
troposphere thus increase when the surface pressure decreases;
(3) because of the Clausius-Clapeyron law, this increases the
mixing ratio of water vapor throughout the troposphere; and (4)
finally, the strong absorption bands in the near-infrared, i.e., the
peak of the stellar spectrum, provide a positive feedback that
tend to humidify the tropopause even more.

Moreover, the water vapor mixing ratio increases globally
because it is advected by the large-scale circulation. As a
consequence, hydrogen escape is not limited by the diffusion
of water vapor anymore, even after the runaway phase. Low
atmospheric background gas contents may thus lead to increased
rates of hydrogen (and thus water) loss to space.
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Fig. 7. Annual mean atmospheric temperature (left) and water vapor
(right) vertical profiles of atmospheres with different total surface
pressure (solid black: 1 bar; dashed, dark red: 0.1 bar; dotted red:
0.01 bar). The composition of all three atmospheres is N2 with 376 ppm
of CO2 and a variable amount of water vapor. The profiles are shown
at the substellar point, but horizontal variations are fairly small above
the 0.1 mbar level due to an efficient transport. Decreasing the surface
pressure increases the water vapor ratio in the upper atmosphere
drastically.

6. Observability

At the time of this study, the existence of planet transits
or flares have not been established, which complicates the
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search. There is only 1.3% of chance that the inclination of the
orbit of Proxima b produces transits, so we do not consider
characterization by transit spectroscopy in this work.

6.1. Prospects for direct imaging

Proxima b may be the habitable-zone terrestrial exoplanet
offering the best combination of angular separation and contrast
for imaging. The angular separation between the planet and
its star varies from 0 (for a 90◦ inclination) to 38 mas
(0.05 AU at 1.29 pc). The planet/star contrast of a 1.1 R⊕
purely Lambertian sphere (surface albedo = 1) at 0.05 AU
from Proxima is 2 × 10−7 when seen with a 90◦ phase angle
and approaches 6 × 10−7 as the phase angle approaches 0◦.
Current instrumentation using adaptive optics and coronography
on 10 m class telescopes (such as SPHERE/VLT, GPI/Gemini)
aims to achieve a contrast of 10−6 − 10−7, but with an inner
working angle of a few λ/D that is not smaller than 100-200 mas
depending on the band (Lawson et al. 2012). Lovis et al.
(2016) suggest that the detection can actually be achieved
with VLT by coupling SPHERE with the future high-resolution
spectrometer ESPRESSO (first light expected in 2017). The
idea is to first use SPHERE to reduce the stellar light by a
factor 103 − 104 at 37 mas from Proxima (∼ 2 λ/D at 700 nm)
and then to search with ESPRESSO for the Doppler shifted
planet signature on the ∼ 37 mas-radius annulus around the star
when RV ephemeris predict maximal angular separation. The
planet and stellar signals could indeed be separated thanks to
cross-correlations with molecular high-resolution fingerprints,
which could be specific to the planet, such O2, or reflected
and Doppler shifted in both cases by the planetary orbital
motion. Such a planet-star disentangling was already achieved
for non-transiting unresolved hot Jupiters with a contrast of
∼ 10−4 (Brogi et al. 2014). Lovis et al. (2016) expect a similar
efficiency, which on top of the stellar extinction provided by
SPHERE would allow them to reach the ∼ 10−7 contrast of
Proxima b.
The combination of contrast and separation that is required
to image Proxima b should be achieved with future larger
telescopes such as the E-ELT (39 m) or the TMT (30 m). For
the E-ELT, 37 mas corresponds to 7λ/D at 1 µm. At such
angular separation, E-ELT instrumentation such as PCS (Kasper
et al. 2013) is planned to achieve contrasts of 10−7 − 10−8, a
performance that is sufficient to aim to directly characterizing
Proxima b.

Following Selsis et al. (2011), we can use GCM simulations
to compute disk-integrated fluxes in the spectral bands of the
GCM and for any observing geometry. Figure 8 and 10 present
synthetic observables at visible-NIR wavelengths obtained with
a simulation for an aquaplanet with an Earth-like atmosphere
(1 bar of N2, 376 ppm of CO2, and variable H2O) and a
synchronous rotation. Figure 8 shows reflection spectra at the
spectral resolution of the GCM for different phase angles and
the main bands observable through Earth’s atmosphere. The
thickness of the curves indicates the range of contrast values
that is obtained for a given phase angle, depending on the
inclination of the system. For instance, both polar and equatorial
observers see the planet with a 90◦ phase angle but they do not
receive the same spectral irradiance. In Figure 8 the radius of
the planet is kept constant so the contrast variation at a given
wavelength is only due to the observing geometry. However,
the actual mass of the planet depends on the inclination of the
orbit. In Figure 10, which shows reflection phase curves for three
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Fig. 8. Reflection spectra computed for the synchronous case with an
Earth-like atmosphere. Each color corresponds to a phase angle (0◦
meaning that the observer looks at the substellar point and 90◦ at a
point on the terminator). The thickness of the curve indicates the range
of possible values depending on the actual observing geometry (see text
and Fig. 9). Straight lines are calculated for a constant surface albedo of
0.4. Curves are plotted in gray when the angular separation falls below
twice the diffraction limit of the E-ELT (2 × 1.2λ/D). These plots are
obtained with a fixed planetary radius of 1.1 R⊕. Because these plots do
not include the contribution from the thermal emission, the contrast at
3.5–4 µm is underestimated by a factor of ∼ 2.

Fig. 9. Observing geometries for spectra computation. Emission and
reflection spectra are presented in this article for phase angles of 15, 30,
60, 90 120, and 150◦.

different inclinations and four spectral bands, we assumed the
following relationship between radius and inclination of Rp ∝

(M/ sin i)0.27.
We can see on these phase curves that low inclinations

have the advantage of keeping the full orbit outside an inner
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Fig. 10. Reflection phase curves computed for the synchronous case with an Earth-like atmosphere for 4 spectral bands falling into the I, J, H
K, and L windows. Shadowed areas indicate the 1-sigma variability due to meteorology (mainly changing cloudiness). The dashed curves are
calculated with a constant surface albedo of 0.5, 0.1, and 0.01. Curves are dotted when the planet is inside an inner working angle of twice the
diffraction limit of the E-ELT (2 × 1.22λ/D). Contrary to Fig 8, these plots include a dependency of the planetary radius on the inclination of
R ∝ (Mmin/ sin i)0.27. We note that 60◦ is the median value for a random distribution of inclinations.

working angle of twice the diffraction limit without losing
contrast because of the increased planetary radius. Of course, for
very low inclinations, the planet could no longer be considered
"Earth-like". For instance, if i < 10◦ (1.5 % of randomly oriented
orbits) then the planet would be at least eight times more massive
than the Earth. Small phase angles produce the highest contrast
but imply small angular separations and short wavelengths. For
phase angles smaller than 30◦, imaging with a 39 m telescope
is doable only in bands I and J, but with a contrast larger
than 10−7. For phase angles between 60 and 90◦, the H and K
bands can also be considered but with contrasts below 10−7.
Imaging seems out of reach in the L band (3 − 4 µm) with a
39 m aperture. Considering the wavelength dependency of the
contrast, the diffraction limit and the fact that adaptive optics
is challenging in the visible, the J band seems to represent a
promising opportunity.

Sensitivity should not be an issue to directly detect Proxima b
with the E-ELT. We calculated the exposure duration required
to achieve a SNR of 10 per spectral channel with a spectral
resolution of 100, assuming that the angular separation would
be sufficient for the noise to be dominated by the sky
background (continuum + emission lines2) and not Speckle
noise. We assumed an overall throughput of 10%, integrated
the background over an Airy disk and used the planetary signal
derived from the GCM simulations for an inclination of 60◦ and
a phase angle of 60◦. We obtained integration times of 5 min at
0.76, 1.25, and 2.3 µm, and 30 min at 1.6 µm.

Assuming that adaptive optics would provide sufficient
efficiency to reach the required contrast and angular resolution
at such short wavelengths, an O2 signature could be searched
at 0.76 µm. This would require a high resolution to separate
the planet lines from the telluric lines, taking advantage of
the Doppler shift of the two components. Snellen et al. (2015)
suggest that a resolution of 100,000 may be necessary for that,

2 We used the ESO documentation for the background:
http://www.eso.org/sci/facilities/eelt/science/drm/
tech_data/background/

which matches that of the planned HIRES instrument3. This
would imply tens of observing nights to reach a SNR of 10
per spectral channel, but previous observations (e.g., Snellen
et al. 2010; Brogi et al. 2012; Snellen et al. 2014) have shown
that a several σ detection of a high-resolution signature by
cross-correlation can be achieved with a much lower SNR per
channel (< 1) and hence a much shorter integration time. Snellen
et al. (2015) estimated that it could be doable in ten hours with
the instrument IFU/E-ELT.

At 3 µm, the maximum angular separation of 37 mas
corresponds to twice the diffraction limit of a 39 m aperture.
Above this wavelength, imaging Proxima b requires larger
apertures and the Earth atmosphere (absorption and emission)
becomes a major obstacle. The planet/star contrast at thermal
wavelengths can, however, be orders of magnitude higher than
the contrast produced by reflected wavelengths. The Earth/Sun
contrast reaches ∼ 5 × 10−7 at 10-12 µm, but Proxima is a
star ∼ 1000 times dimmer than the Sun while its planet b
could emit about the same as Earth. Contrast values of up
to ∼ 5 · 10−4 could thus be expected. In addition, thermal
wavelengths provide a unique way to constrain atmospheric
properties (temperature mapping at different pressure levels,
day-night heat redistribution, greenhouse effect, detection of IR
absorbers such as H2O, CO2, O3, and CH4). For this reason,
space telescopes using IR nulling interferometry have been
considered in the past (Darwin, TPF-I) and will certainly have
to be reassessed in the future as one of the main ways to
characterize the atmosphere and climate of terrestial planets in
nearby systems. In this context, we computed mid-IR spectra
(Figure 12) and thermal phase curves (Figure 13) obtained
with the same simulation used to produce short wavelength
observables.

The phase curves we obtain are rather flat except in
the 8–12 µm atmospheric window where the dayside emits
significantly more than the nightside. Because the flux received
by the planet is rather low, the updraft of clouds and humidity
on the dayside remains moderate and restricted within a small
3 Documentation for E-ELT instruments HIRES and IFU can be found
at https://www.eso.org/sci/facilities/eelt/docs/

Article number, page 13 of 31

http://www.eso.org/sci/facilities/eelt/science/drm/tech_data/background/
http://www.eso.org/sci/facilities/eelt/science/drm/tech_data/background/
https://www.eso.org/sci/facilities/eelt/docs/


A&A proofs: manuscript no. 29577_am_RESUB

Fig. 11. Phase curves and observing geometries. We computed reflected
and emitted light curves for 3 inclinations as follows: 90, 60, and 30◦
corresponding to subobserver latitude of 0, 30, and 60◦, respectively (as
the we assumed a null obliquity). The subobserver latitude is indicated
with a red line. In the Appendix B, phase curves are shown only for an
inclination of 60◦ (the median value for randomly oriented orbits).

region around the substellar point. For this reason we do not find
that most of the cooling occurs on the nightside as found by Yang
et al. (2013), Gómez-Leal et al. (2012), or Bolmont et al. (2016b)
for planets with an Earth-like irradiation.

Considering the history of the planet, and in particular its hot
past, an Earth-like atmosphere may not be the most relevant case
to address observation prospects. In the Appendix B we present
spectra and phase curves obtained with different compositions
and rotations. As the planet could have experienced a fate similar
to Venus (Ingersoll 1969), we also present reflection spectra
and phase curves for a Venus-like atmosphere (Lebonnois et al.
2015), including sulphur-bearing aerosols known to produce
a high albedo at visible wavelength, and then exposed to the
irradiance of Proxima at the orbital distance of Proxima b.
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Fig. 12. Emission spectra computed for the synchronous case with
an Earth-like atmosphere. Each color corresponds to a phase angle.
The thickness of the curves indicate the variability associated with
inclination. Dashed lines are calculated for a planet with no atmosphere
with a constant surface albedo of 0.2. These plots are obtained with a
fixed planetary radius of 1.1 R⊕, whatever the inclination of the orbit.

6.2. Prospects with James Webb Space Telescope

Observing the modulation due to thermal phase curves does
not require a transit and has been achieved by photometry
in the case of both transiting and non-transiting hot Jupiters
(Crossfield et al. 2010). Although very challenging, in particular
because of star variability, this observation can be attempted
with James Webb Space Telescope (JWST). The planet-star
contrast in the mid-IR can reach 10−4 but only the amplitude
of the modulation can be detected. This amplitude depends
strongly on the thickness of the atmosphere as shown by the
phase curves presented in the Appendix B. Dense atmospheres
lower the day-night temperature contrast and therefore produce
rather flat light curves and modulation below 10−5 in contrast.
On the other hand, planets with no or a tenuous atmosphere
(< 10 mbar) produce contrast amplitudes of 10−5 − 10−4 in
the wavelength range 8 − 15 µm. Fig 14 shows the amplitude
of the contrast modulation for a planet with no atmosphere, in
radiative equilibrium, and for two inclinations. The modulation
decreases with the inclination but this decrease is compensated
by the increase of the mass and thus the radius. One can see
that 1 hr exposure with the JWST at R=10 facilitates beating
the stellar photon noise above 6 µm. According to Belu et al.
(2011), the total noise is usually within 2-3 times the stellar
photon noise for wavelengths below 15 µm; above this limit
the thermal emission from the telescope dramatically degrades
the observations. Detecting these modulations with JWST would
be extremely challenging because of stellar variability and
flares. But flux variations are smaller in the infrared and the
orbital period and ephemeris of the planet are known, which
considerably helps planning short exposure over several orbits,
in particular near the peak at superior conjunction. Measuring
a modulation would point to planets with no dense atmosphere
such as Mercury or Mars. In theory, measurement at different
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Fig. 13. Emission phase curves computed for the synchronous case
with an Earth-like atmosphere, for 4 spectral bands used in the GCM.
Gray areas indicate the 1-sigma variability due to meteorology (mainly
changing cloudiness). Dashed curves are calculated for a planet with
no atmosphere with a constant surface albedo of 0.2. Contrary to
fig 12, these plots include a dependency of the planetary radius on the
inclination of R ∝ (M/ sin i)0.27.
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Fig. 14. Observability of the photometric modulation due to thermal
phase curves with JWST. The amplitude of the modulation is calculated
for a planet with no atmosphere and a Bond albedo of 0.2 and with a
radius that scales with the inclination as R ∝ (M/ sin i)0.27. The noise
is computed for a 1 hr exposure, a spectral resolution of 10, and the
collecting area of the JWST (25 m2).

wavelengths could be used to find atmospheric signatures (Selsis
et al. 2011), constrain the radius, albedo, and inclination of the
planet (Maurin et al. 2012) as well as its rotation (Selsis et al.
2013).

7. Discussions

The modeling work performed here to explore the possible
climates and observability of Proxima b remains speculative.
Major surprises in the composition of the atmosphere or the
nature of the planet cannot be discarded. Within the known
uncertainties, we can list the following points:

1. The luminosity of Proxima Centauri is not perfectly
known: Using interferometry with two VLT telescopes,
Demory et al. (2009) measured the radius of Proxima b
and its effective temperature and found R=0.141 ± 0.007 R�
and Te f f = 3098 ± 56 K, which yields a bolometric
luminosity of 0.00165 ± 0.00012 L�. In this study we used
a value of 0.0017 L� while Anglada-Escudé et al. (2016)
give 0.00155 L� as a median value that is derived from
Boyajian et al. (2012). Both values are within the uncertainty
of Demory et al. (2009) and Boyajian et al. (2012). Although
changing the actual bolometric flux received by Proxima b
would slightly alter surface and atmosphere temperatures
found for a given atmospheric composition, this discrepancy
does qualitatively not impact our results. Changing the actual
bolometric flux received by Proxima b would of course
alter the detailed relationship between atmospheric pressure
and temperature. Considering the importance of this system,
the community should agree on a standard and calibrated
irradiance spectrum of Proxima to be used for climate and
habitability studies.

2. The amount of background gas: Some simulations in this
work included background N2 while others did not. It would
require dedicated absorption coefficients to perform all the
GCM simulations with a fixed N2 partial pressure. Moreover,
we have bad constraints on the amount of background gas
available on the planet because of, first, uncertainties on
the mass of Proxima b and, second, the possibility that the
background gas was lost to space as a result of the high XUV
flux of Proxima Centauri (Ribas et al. 2016).

3. The convection scheme: It should be kept in mind that
models like Yang et al. (2013) find higher albedos in the
substellar area owing to a different convection scheme and
possibly different cloud parametrizations. As Proxima b
is moderately irradiated, this discrepancy might not be as
important as for the near-inner edge cases studied by Yang
et al. (2013).

4. The oceanic circulation: We recall that our results in the
aquaplanet regime neglected the effect of oceanic transport.
This is an important era of future improvement, although
it adds several new unconstrained ingredients, such as the
presence and location of continents.

5. Climate retroactions: We assumed in this study that
the amount of volatiles (H2O, CO2, and N2) should be
uncorrelated and therefore that each configuration of volatile
inventory could be achievable by Proxima b. In fact, climate
retroactions such as the carbonate-silicate cycle (Walker
et al. 1981) could favor some of these configurations by
linking the amount of carbon dioxide and water.
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8. Conclusions

In this study, we explored the possible climates of Proxima
Centauri b for a wide range of volatile inventories of water,
carbon dioxide, and nitrogen. It appears from our results that
the habitability of the planet is possible for a very broad range of
atmospheric pressures and compositions, as shown by the size of
the blue regions in Figure 1.

In a nutshell, the presence of surface liquid water requires
either a large surface inventory of water (a global ocean
able to resupply H2O to the dayside by deep circulation) or
an atmosphere with a strong enough greenhouse effect that
increases surface temperatures above the freezing point of water
everywhere.

Apart from receiving the necessary insolation, this study
tells us that the key ingredient to the habitability of a planet is
the retention of all volatiles, such as water, of course, but also
non-condensible gases (with a greenhouse effect or not) to warm
surface cold traps. Ribas et al. (2016) showed that it is possible
that the planet lost large amounts of water. However, this work
shows that even with extremely low amounts of water (a few
10−3 Earth ocean content for the synchronous case and less than
10−5 for the asynchronous case), there are CO2 pressures that
allow surface liquid water.

More generally, these conclusions are not restricted to the
case of Proxima b. In fact, any low-obliquity planet within the
classical habitable zone of its star should be in one of the climate
regimes discussed here, although the limits between the various
regimes would shift quantitatively with the planet parameters
(e.g., the insolation).

Prospects for direct imaging with E-ELT are extremely
promising: the star-planet separation reaches 9.5 λ/D at 760 nm
(wavelength of the O2 band) with a contrast of 0.9 − 5 ×
10−7 (depending on atmospheric and surface composition,
and planetary radius) and 3.6 λ/D at 2 µm with a contrast
of 10−7 − 10−8. J band (1.1-1.4 µm) offers a fine trade-off
in terms of separation, contrast, and constraints on adaptive
optics. The brightness of the planet should allow high-resolution
spectroscopy and the search for a variety of molecular
signatures, including O2, H2O, CO2, and CH4.

Thermal phase curve modulations are observable - in theory
- with JWST, with a contrast of ∼ 10−5 at 10 µm but will
be challenging because of stellar variability. More accurate
mid-IR spectroscopy would probably require space-based
interferometry. Most of our knowledge on planetary atmospheres
and habitability come from the study of Venus, Mars, and Earth.
Proxima b could potentially be the fourth terrestrial planet to
confront all that we know on these domains.
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Appendix A: Computation of maximal ice thickness
before basal melting

Because the ice thermal conductivity can vary substantially
with temperature according to the relation λice(T )=A/T with
A=651 W m−1 (Petrenko & Whitworth 2002), the temperature
profile inside an ice layer in equilibrium follows an exponential
law from which we derive a maximum thickness hmax

ice before
melting (Abbot & Switzer 2011),

hmax
ice =

A
Fgeo

ln
(

Tmelt

Tsurf

)
, (A.1)

where Fgeo is the internal heat flux and Tmelt is the melting
temperature of ice at the base of the glacier. For pressure lower
than 100 bars (ice thickness lower than ∼ 1 km), Tmelt is roughly
constant and equal to 273 K. However, this assumption does
not work for higher pressures. Thus, we use the following
parametrization for the melting curve of ice (Wagner et al. 1994):

Pmelt(T ) = Pref

[
1 − 0.626 × 106

1 − (
T

Tref

)−3
+0.197135 × 106

1 − (
T

Tref

)21.2 ], (A.2)

where Tref and Pref are the temperature and pressure of the triple
point of water.

Using the relation hmax
ice =

Pmelt−Psurf
ρice g and following a similar

approach to Leconte et al. (2013b), we can solve the system of
equations (A.1, A.2) implicitly (and numerically) and find the
thickness at which melting occurs at the base of the glaciers.

Appendix B: Spectra and phase curves

We present here synthetic spectra and phase curves obtained
with some of the GCM simulations. Reflected and emitted
spectra are obtained as in Fig. 8 and Fig. 12, respectively.
Reflection and thermal phase curves are computed as in Fig. 10
and Fig. 13, respectively, for a 60◦ inclination and a radius
R= (Mmin/ sin 60◦)0.27 = 1.11 R⊕. Color codes for phase angles
and wavelengths are the same as for figures in the main text.

To describe each different type of observables (reflected
spectra, reflected lightcurves, thermal spectra, and thermal
lightcurves), we start from dry cases with tenuous atmosphere,
which exhibit the most simple features, and progress toward
dense and humid atmospheres that combine more effects,
including clouds.

Appendix B.1: Reflected spectra

Reflected spectra are shaped by Rayleigh scattering from the gas,
Mie scattering from clouds, molecular absorption features, and
surface reflectivity.
- Dry case, Earth-like atmosphere (Fig. B.3): We can see
the decrease of the albedo with increasing wavelengths in
the UV-visible domain due to the combination of Rayleigh
scattering and the constant surface albedo of 0.2. CO2 absorption
features can be seen at 1.9 and 2.6-2.7 µm. The rotation mode of
the planet does not affect the observables.
- Dry case, 1 bar of CO2 (Fig. B.4): same as above with more
and deeper CO2 features.
- Aquaplanet, mainly frozen, 10 mbar of N2; 376 ppm of

CO2 (Fig. B.5): Rayleigh scattering is negligible and the only
atmospheric features are the H2O bands. The drop of albedo
between 1 and 1.5 µm is produced by the wavelength-dependent
reflectivity of ice included in the model (Fig. 2). This drop is
attenuated in the synchronized case because the dayside is partly
covered by liquid water (Fig 6) whose reflectivity is constant
with wavelength (∼ 7%) and has a value close to that of ice in
the infrared (∼ 5%). For this reason, the overall albedo is also
higher for the 3:2 rotation, the surface being mostly covered by
ice.
- Aquaplanet, mainly frozen, 1 bar of N2; 376 ppm of CO2
(Fig. B.6): In addition to the features described in the previous
case, this configuration also exhibits signatures of the larger
water vapor content due to higher temperatures: deeper H2O
absorption bands and a larger spatial and temporal variability due
to meteorology. In synchronous rotation, the Rayleigh slope can
be seen but not in the non-synchronous case because the albedo
of the icy surface dominates over the albedo due to Rayleigh
scattering.
- Aquaplanet, 1 bar of CO2 (Fig. B.7): This case exhibits the
strongest molecular absorptions due to large columns of both
CO2 and water vapor. The low albedo of the liquid water surface
reveals the atmospheric Rayleigh slope at wavelength lower than
600 nm. The spectrum of the synchronous case is very sensitive
to the observing geometry for a given phase angle. As seen in
Fig B.2, this is due to the concentration of clouds at low latitude
and eastward of the substellar point in the synchronous case,
while the 3:2 case has very uniform cloud coverage.

Appendix B.2: Reflected phase curves

Departures between the observed phase curve and phase curve
produced by a sphere with uniform surface albedo are due to
longitudinal variations of reflectivity on the dayside, which, in
our cases, can be due to cloud coverage or change in the nature
of the surface (liquid versus icy).
- Dry case, Earth-like atmosphere (Fig. B.9): The lightcurves
are those expected for a sphere with a uniform albedo. As the
atmosphere is very transparent at visible-NIR wavelengths, the
value of this albedo is 0.2 (the wavelength-independent value
attributed to the dry surface in the model) for all the bands
except the one in the UV (cyan) that exhibits a higher albedo
from Rayleigh scattering.
- Dry case, 1 bar of CO2 (Fig. B.10): same as above, except for
the 1.6 (green) and 1.25 µm (red) bands that are attenuated by
CO2 absorption.
- Aquaplanet, mainly frozen, 10 mbar of N2; 376 ppm of CO2
(Fig. B.11): We note again the overall decrease of albedo with
increasing wavelength (a property of ice). While the phase
curves of the asynchronous case present no longitudinal change
of reflectivity, the phase curves of the synchronous case show a
flattening at opposition at wavelength below 1.3 µm, which is
due to the different albedo of ice and liquid water. This decrease
in albedo at small phase angles is therefore a signature of the
"eye ball" configuration that is observable here because the
atmosphere and cloud cover are thin enough to give access to
the surface reflectivity.
- Aquaplanet, mainly frozen, 1 bar of N2; 376 ppm of CO2
(Fig. B.12): The "eye ball" signature of the synchronous case
is still noticeable at wavelengths not absorbed by water vapor
and not dominated by Rayleigh scattering, so typically between
0.5 and 0.8 µm. Clouds reduce the signature without hiding
it completely as they cover the dayside ocean (see Fig. B.1)
only partially and because their albedo is still lower than
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that of ice at these wavelengths. Because thick clouds tend
to accumulate eastward of the substellar point, the phase
curves are asymmetric except at UV wavelengths that are
backscattered above the clouds. In the asynchronous case clouds
are uniformly distributed in longitude and do not produce
significant asymmetry.
- Aquaplanet, 1 bar of CO2 (Fig. B.13): Both the synchronous
and asynchronous cases exhibit a high variability due to
meteorology, which is a result of high temperatures and
strong water cycle. The visible and NIR phase curves of the
synchronous case are very asymmetric. The reason is the
same as in the previous case but with a sharper transition in
cloudiness with a clear sky west of the substellar point and a
dense cloud patch east of the substellar point, as seen on Fig. B.2.

Appendix B.3: Emission spectra

Thermal emission spectra are influenced by the temperature
distribution at the surface at wavelengths where the atmosphere
is transparent and by the thermal structure of the atmosphere at
other wavelengths. In theory, emission spectra are also shaped
by the surface emissivity but in our model it is fixed to unity in
most cases.
- Dry case, Earth-like atmosphere (Fig. B.15): In the
synchronous case, the spectra are similar to those of sphere in
radiative equilibrium except in the CO2 band, which is emitted
by a horizontally uniform layer of the upper atmosphere. At
high phase angle and long wavelengths, differences from the
sphere in radiative equilibrium appear owing to the transport
of heat toward the nightside that contributes to the emission.
In 3:2 rotation, the spectra are similar but more sensitive to
the observing geometry at a given phase angle as the surface
temperature map is no longer symmetric relative to the substellar
point.
- Dry case, 1 bar of CO2 (Fig. B.16): In addition to the 15 µm
band, high pressure CO2 features including the hot bands at 9.5
and 11 µm and a CIA feature between 6.5 and 8 µm. These
absorption features probe uniform high-altitude atmospheric
layers and do not depend on the subobserver position, while
windows probe the surface and exhibit a dependency on the
observing geometry (synchronous) and variability (3:2).
- Aquaplanet, mainly frozen, 10 mbar of N2; 376 ppm of
CO2 (Fig. B.17): The spectra are featureless except for a
shallow H2O signature at 6-7 µm in the synchronous case. They
depart from the spectra of a sphere in radiative equilibrium, in
particular at long wavelengths, as the surface temperature does
not drop below 200 K (synchronous) and 150 K (3:2) thanks to
a redistribution of latent heat.
- Aquaplanet, mainly frozen, 1 bar of N2; 376 ppm of CO2
(Fig. B.18): The spectra are similar to a present Earth spectrum,
without the O3 band and with shallower water vapor absorption
due to lower temperatures.
- Aquaplanet, 1 bar of CO2 (Fig. B.19): There are no difference
between the synchronous and 3:2 cases. All atmospheric
windows are closed by either CO2 or H2O absorption and
the emerging spectrum come from different but horizontally
uniform layers.

Appendix B.4: Thermal phase curves

Emission light curves are controlled by the temperature
longitudinal distribution at the surface if the atmosphere is
transparent in the observed band or at the emitting atmospheric
layer otherwise.
- Dry case, Earth-like atmosphere (Fig. B.20): In both cases, the
15 µm CO2 band is emitted from a uniform high altitude layer,
which produces a flat phase curve. In the synchronous case,
other bands exhibit phase curves that are similar to those of an
airless planet except at high phase angle and long wavelengths,
where the warming of the nightside by atmospheric circulation
flattens the curves. In the 3:2 case, the flattening is more
pronounced and is associated with a lag as surface temperature
peaks in the afternoon.
- Dry case, 1 bar of CO2 (Fig. B.21): similar to the dry Earth
case except that the 6.7 µm band is flattened due CO2 CIA
absorption.
- Aquaplanet, mainly frozen, 10 mbar of N2; 376 ppm of CO2
(Fig. B.22): Here, the 15 µm CO2 band is no longer opaque and
exhibits the same behavior as the other bands. Compared with
the previous case, and despite a more tenuous atmosphere, phase
curves are more flattened because of the additional redistribution
of latent heat (and the relatively high surface thermal inertia for
the asynchronous case).
- Aquaplanet, mainly frozen, 1 bar of N2; 376 ppm of CO2
(Fig. B.23): Efficient zonal heat redistribution flattens all the
phase curves in the 3:2 case. In the synchronous case, the 11
and 7.7 µm bands coming from either surface or clouds show an
increase at small phase angle with some asymmetry owing to
the patch of clouds eastward of the substellar point (see Fig. B.1.
The 6.7 µm band emitted in the troposphere is flat with a slight
decrease due to the clouds as well. The 15 and 24 µm bands are
flat and not affected by clouds, emerging from higher levels.
- Aquaplanet, 1 bar of CO2 (Fig. B.24): There are no difference
between the synchronous and 3:2 cases. All atmospheric
windows are closed by either CO2 or H2O absorption and
the emission comes from different but horizontally uniform
layers. This produces flat light curves at different brightness
temperatures with some shallow attenuation by the clouds at the
most transparent wavelengths (11 and 7.7 µm).
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Fig. B.1. Cloud maps for an aquaplanet with an Earth-like atmospheric composition (1 bar of N2, 376 ppm of CO2). Left : synchronous rotation.
Right : 3:2 spin-orbit resonance. In both cases, longitude is given relative to the substellar point. Colors indicate the fractional cloud cover, averaged
over 2 orbits.
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Fig. B.2. Cloud maps for an aquaplanet with a 1 bar CO2 atmosphere. Left: synchronous rotation. Right: 3:2 spin-orbit resonance. In both cases,
longitude is given relative to the substellar point. Colors indicate the fractional cloud cover, averaged over 2 orbits.
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Fig. B.3. Reflection spectra computed for a dry planet with an Earth-like atmosphere in synchronous rotation (left) and 3:2 spin-orbit resonance
(right).

Fig. B.4. Reflection spectra computed for a dry planet with a 1 bar CO2-dominated atmosphere in synchronous rotation (left) and 3:2 spin-orbit
resonance (right).
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Fig. B.5. Reflection spectra computed for an aquaplanet with a 10 mbar N2-dominated (+ 376ppm of CO2) atmosphere in synchronous rotation
(left) and 3:2 spin-orbit resonance (right).

Fig. B.6. Reflection spectra computed for an aquaplanet with an Earth-like atmosphere in synchronous rotation (left) and 3:2 spin-orbit resonance
(right).
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Fig. B.7. Reflection spectra computed for an aquaplanet with a 1 bar CO2-dominated atmosphere in synchronous rotation (left) and 3:2 spin-orbit
resonance (right).

Fig. B.8. Reflection spectra computed for a dry planet with a Venus-like atmosphere (including aerosols).
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Fig. B.9. Reflection phase curves computed for a dry planet with an Earth-like atmosphere in synchronous rotation (left) and 3:2 spin-orbit
resonance (right).

Fig. B.10. Reflection phase curves computed for a dry planet with a 1 bar CO2-dominated atmosphere in synchronous rotation (left) and 3:2
spin-orbit resonance (right).
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Fig. B.11. Reflection phase curves computed for an aquaplanet with a 10 mbar N2-dominated (+ 376ppm of CO2) atmosphere in synchronous
rotation (left) and 3:2 spin-orbit resonance (right).

Fig. B.12. Reflection phase curves computed for an aquaplanet with an Earth-like atmosphere in synchronous rotation (left) and 3:2 spin-orbit
resonance (right).
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Fig. B.13. Reflection phase curves computed for an aquaplanet with a 1 bar CO2-dominated atmosphere in synchronous rotation (left) and 3:2
spin-orbit resonance (right).

Fig. B.14. Reflection phase curves computed for a dry planet with a Venus-like atmosphere (including aerosols).
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Fig. B.15. Emission spectra computed for a dry planet with an Earth-like atmosphere in synchronous rotation (left) and 3:2 spin-orbit resonance
(right).

Fig. B.16. Emission spectra computed for a dry planet with a 1 bar CO2-dominated atmosphere in synchronous rotation (left) and 3:2 spin-orbit
resonance (right).
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Fig. B.17. Emission spectra computed for an aquaplanet with a 10 mbar N2-dominated (+ 376ppm of CO2) atmosphere in synchronous rotation
(left) and 3:2 spin-orbit resonance (right).

Fig. B.18. Emission spectra computed for an aquaplanet with an Earth-like atmosphere in synchronous rotation (left) and 3:2 spin-orbit resonance
(right).
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Fig. B.19. Emission spectra computed for an aquaplanet with a 1 bar CO2-dominated atmosphere in synchronous rotation (left) and 3:2 spin-orbit
resonance (right).
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14.3 - 15.9 μm
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Fig. B.20. Emission phase curves computed for a dry planet with an Earth-like atmosphere in synchronous rotation (left) and 3:2 spin-orbit
resonance (right).
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Fig. B.21. Emission phase curves computed for a dry planet with a 1 bar CO2-dominated atmosphere in synchronous rotation (left) and 3:2
spin-orbit resonance (right).

Fig. B.22. Emission phase curves computed for an aquaplanet with a 10 mbar N2-dominated (+ 376ppm of CO2) atmosphere in synchronous
rotation (left) and 3:2 spin-orbit resonance (right).
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Fig. B.23. Emission phase curves computed for an aquaplanet with an Earth-like atmosphere in synchronous rotation (left) and 3:2 spin-orbit
resonance (right).

Fig. B.24. Emission phase curves computed for an aquaplanet with a 1 bar CO2-dominated atmosphere in synchronous rotation (left) and 3:2
spin-orbit resonance (right).
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