18 research outputs found

    Spatio-temporal variability of fog-water collection in the eastern Iberian Peninsula: 2003-2012

    Get PDF
    Among the different inputs involved in the hydrological system, fog water measured by man-made passive devices is one of the most unknown components, although it could be an additional water resource for specific environmental applications (forest restoration, forest firefighting, etc.). Focusing on the Mediterranean Iberian Peninsula, the aim of this work is to quantify fog-water collected by a 24-fog-stations network spread across three latitudinal sectors with different locations (coastal, pre-littoral and inland), and to determine the most productive sites. Measurements from the network show that distance-to-sea, latitude or elevation differences between stations are factors affecting fog-water collection potential. The network, based on passive cylindrical omnidirectional fog-water collectors, was active during the period 2003-2012. In addition to fog collection, other environmental variables such as rainfall, wind speed and wind direction, air temperature and relative humidity were measured. These ancillary data were used in a specific data reduction technique to eliminate the simultaneous rainwater component from the fog water measurements, and in the retrieval of the optimum mean wind directions to harvest fog-water efficiently. It was concluded that (i) positive differences in elevation allow greater collection rates, even under 100m differences; (ii) optimum harvesting wind directions for inland locations are in line with the orientation of the existent valley coupled with the shortest path to the coastline, their collected fog-water volumes being generally smaller than those near the coast; (iii) fog-water collection at coastal locations present more dispersed optimal wind directions, ranging from north to the direction of the most immediate coastline; and (iv) there is a practically null dependence of the optimum mean wind direction on seasonality, but a strong dependence of fog-water captured volumes, however

    Measurement report: Spatial variability of northern Iberian rainfall stable isotope values - investigating atmospheric controls on daily and monthly timescales

    Get PDF
    For the first time, this article presents a large dataset of precipitation isotopic measurements (δ18Op and δ2Hp) sampled every day or 2 d from seven sites on a west-to-east transect across northern Spain for 2010-2017. The main aim of this study is to (1) characterize the rainfall isotopic variability in northern Spain at daily and monthly timescales and (2) assess the principal factors influencing rainfall isotopic variability. The relative role of air temperature and rainfall in determining the stable isotope composition of precipitation changes along the west-to-east transect, with air temperature being highly correlated with δ18Op at daily and monthly timescales, while a few sites along the transect show a significant negative correlation with precipitation. The highest air temperature-δ18Op dependency is found for a station located in the Pyrenees. Frontal systems associated with North Atlantic cyclones are the dominant mechanism inducing precipitation in this region, particularly in winter. This study allows an exploration of the role of air mass source and trajectory in determining the isotopic composition of rainfall in northern Iberia by characterizing the moisture uptake for three of the seven stations. The importance of continental versus marine moisture sources is evident, with clear seasonal and spatial variations. In addition, the type of precipitation (convective versus frontal rainfall) plays a key role, with convective rainfall associated with higher δ18Op values. This comprehensive spatiotemporal approach to analyzing the rainfall isotopic composition represents another step forward towards developing a more detailed, mechanistic framework for interpreting stable isotopes in rainfall as a paleoclimate and hydrological tracer

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Climate change may alter the signal of plant facilitation in Mediterranean drylands

    Get PDF
    Facilitation is an ecological interaction that has allowed plant lineages to survive past climate aridification. This same interaction can be expected to buffer the effects of current climate change, which is tending to become more arid in the Mediterranean basin. However, facilitation may wane when stress conditions are extreme. Here we argue that the erosion of the facilitation signal between Quercus ilex and its nurses detected by García‐Fayos et al. (2020) along 50 years in the eastern Iberian Peninsula may have been due to the reversion of facilitation to competition imposed by an increasingly arid climate. To support this speculation, we reconstructed the climatic niche of Q. ilex and its nurses as well as the local climate change occurring in the populations studied. We found that the decreasing trend in precipitation is pushing Q. ilex out of its climatic optimum in the stressful (semi‐arid) but not in the mild (sub‐humid) habitats. These results suggest that facilitation will be unable to mitigate the effects of climate change, especially those related to aridification. However, other scenarios linking climatic change with herbivory and rural abandonment should be considered to fully understand the past, present and future of facilitation interactions. Reconstructing past interactions can serve as an early warning signal about the future of populations in the face of climate change

    Evaluation of long-term changes in precipitation over Bolivia based on observations and Coupled Model Intercomparison Project models

    Get PDF
    Using observations and model simulations from the 5th and 6th phases of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively), this study evaluated changes in monthly, seasonal, and annual precipitation over Bolivia from 1950 to 2019. Results demonstrate that observed precipitation is characterized by strong interannual and decadal variability. However, long-term precipitation trends were not identified on the annual scale. Similarly, changes in seasonal precipitation were almost nonsignificant (p > .05) for the study period. Spatially, albeit with its complex orography, no substantial regional variations in observed precipitation trends can be identified across Bolivia. In contrast, long-term precipitation trends, based on CMIP5 and CMIP6 models, suggest a dominance of negative trends, mainly during austral winter (JJA) (−10%) and spring (SON) (−15%). These negative trends were more pronounced in the lowlands of Bolivia (−20%). Overall, these contradictory results highlight the need for validating precipitation trend outputs from model simulations, especially in areas of complex topography like Bolivia.This work was sup-ported by the research projects CGL2017-82216-R,PCI2019-103631, and PID2019-108589RA-I00, financedby the Spanish Ministry of Science and FEDER, theCROSSDRO project financed by the AXIS (Assessment ofCross(X)-sectorial climate impacts and pathways for Sus-tainable transformation), the JPI-Climate co-funded callof the European Commission, and the LINCGLOBAL-CSIC project (INCGLO0023, RED-CLIMA)

    Reasons to be cheerful? Reflections on GPs' responses to depression

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2016

    No full text

    State of the climate in 2014

    No full text
    Most of the dozens of essential climate variables monitored each year in this report continued to follow their long-term trends in 2014, with several setting new records. Carbon dioxide, methane, and nitrous oxide-the major greenhouse gases released into Earth's atmosphere-once again all reached record high average atmospheric concentrations for the year. Carbon dioxide increased by 1.9 ppm to reach a globally averaged value of 397.2 ppm for 2014. Altogether, 5 major and 15 minor greenhouse gases contributed 2.94 W m-2 of direct radiative forcing, which is 36% greater than their contributions just a quarter century ago. Accompanying the record-high greenhouse gas concentrations was nominally the highest annual global surface temperature in at least 135 years of modern record keeping, according to four independent observational analyses. The warmth was distributed widely around the globe's land areas, Europe observed its warmest year on record by a large margin, with close to two dozen countries breaking their previous national temperature records; many countries in Asia had annual temperatures among their 10 warmest on record; Africa reported above-average temperatures across most of the continent throughout 2014; Australia saw its third warmest year on record, following record heat there in 2013; Mexico had its warmest year on record; and Argentina and Uruguay each had their second warmest year on record. Eastern North America was the only major region to observe a below-average annual temperature. But it was the oceans that drove the record global surface temperature in 2014. Although 2014 was largely ENSO-neutral, the globally averaged sea surface temperature (SST) was the highest on record. The warmth was particularly notable in the North Pacific Ocean where SST anomalies signaled a transition from a negative to positive phase of the Pacific decadal oscillation. In the winter of 2013/14, unusually warm water in the northeast Pacific was associated with elevated ocean heat content anomalies and elevated sea level in the region. Globally, upper ocean heat content was record high for the year, reflecting the continued increase of thermal energy in the oceans, which absorb over 90% of Earth's excess heat from greenhouse gas forcing. Owing to both ocean warming and land ice melt contributions, global mean sea level in 2014 was also record high and 67 mm greater than the 1993 annual mean, when satellite altimetry measurements began. Sea surface salinity trends over the past decade indicate that salty regions grew saltier while fresh regions became fresher, suggestive of an increased hydrological cycle over the ocean expected with global warming. As in previous years, these patterns are reflected in 2014 subsurface salinity anomalies as well. With a now decade-long trans-basin instrument array along 26°N, the Atlantic meridional overturning circulation shows a decrease in transport of-4.2 ± 2.5 Sv decade-1. Precipitation was quite variable across the globe. On balance, precipitation over the world's oceans was above average, while below average across land surfaces. Drought continued in southeastern Brazil and the western United States. Heavy rain during April-June led to devastating floods in Canada's Eastern Prairies. Above-normal summer monsoon rainfall was observed over the southern coast of West Africa, while drier conditions prevailed over the eastern Sahel. Generally, summer monsoon rainfall over eastern Africa was above normal, except in parts of western South Sudan and Ethiopia. The south Asian summer monsoon in India was below normal, with June record dry. Across the major tropical cyclone basins, 91 named storms were observed during 2014, above the 1981-2010 global average of 82. The Eastern/Central Pacific and South Indian Ocean basins experienced significantly above-normal activity in 2014; all other basins were either at or below normal. The 22 named storms in the Eastern/Central Pacific was the basin's most since 1992. Similar to 2013, the North Atlantic season was quieter than most years of the last two decades with respect to the number of storms, despite the absence of El Niño conditions during both years. In higher latitudes and at higher elevations, increased warming continued to be visible in the decline of glacier mass balance, increasing permafrost temperatures, and a deeper thawing layer in seasonally frozen soil. In the Arctic, the 2014 temperature over land areas was the fourth highest in the 115-year period of record and snow melt occurred 20-30 days earlier than the 1998-2010 average. The Greenland Ice Sheet experienced extensive melting in summer 2014. The extent of melting was above the 1981-2010 average for 90% of the melt season, contributing to the second lowest average summer albedo over Greenland since observations began in 2000 and a record-low albedo across the ice sheet for August. On the North Slope of Alaska, new record high temperatures at 20-m depth were measured at four of five permafrost observatories. In September, Arctic minimum sea ice extent was the sixth lowest since satellite records began in 1979. The eight lowest sea ice extents during this period have occurred in the last eight years. Conversely, in the Antarctic, sea ice extent countered its declining trend and set several new records in 2014, including record high monthly mean sea ice extent each month from April to November. On 20 September, a record large daily Antarctic sea ice extent of 20.14 × 106 km2 occurred. The 2014 Antarctic stratospheric ozone hole was 20.9 million km2 when averaged from 7 September to 13 October, the sixth smallest on record and continuing a decrease, albeit statistically insignificant, in area since 1998
    corecore