6,173 research outputs found
Energy loss in calorimeters using muon spectrometer information at the 2004 ATLAS Combined Test Beam.
In 2004 an ATLAS Combined Test Beam (CTB) was performed in the CERN North area. A complete slice of the barrel detector and of the muon end-cap was tested, with the following goals: pre-commission the final elements and study the combined detector performance. In this note a combined analysis using calorimeter and muon spectrometer information, based on data samples collected during this test, is presented
The Process Manager in the ATLAS DAQ System
The Process Manager is the component responsible for launching and controlling processes in the ATLAS DAQ system. The tasks of the Process Manager can be coarsely grouped into three categories: process creation, control and monitoring. Process creation implies the creation of the actual process on behalf of different users and the preparation of all the resources and data needed to actually start the process. Process control includes mostly process termination and UNIX signal dispatching. Process monitoring implies both giving state information on request and initiating call-backs to notify clients that processes have changed states. This paper describes the design and implementation of the DAQ Process Manager for the ATLAS experiment. Since the Process Manager is at the basis of the DAQ control system it must be extremely robust and tolerate the failure of any other DAQ service. Particular emphasis will be given to the testing and quality assurance procedures carried out to validate this component
Access Control Design and Implementations in the ATLAS Experiment
The ATLAS experiment operates with a significant number of hardware and software resources. Their protection against misuse is an essential task to ensure a safe and optimal operation. To achieve this goal, the Role Based Access Control (RBAC) model has been chosen for its scalability, flexibility, ease of administration and usability from the lowest operating system level to the highest software application level. This paper presents the overall design of RBAC implementation in the ATLAS experiment and the enforcement solutions in different areas such as the system administration, control room desktops and the data acquisition software. The users and the roles are centrally managed using a directory service based on Lightweight Directory Access Protocol which is kept in synchronization with the human resources and IT data
Procedures of sensors deployment methodology on physical supports/platforms
The aim of task 2.3 is to define specific platform characteristics and identify deployment difficulties in order to determine the adequacy of sensors within specific platforms. In order to obtain the necessary information, two online questionnaires were realized. One questionnaire was created for sensor developers and one for those partners that will test the sensors at sea.
The seven developers in COMMON SENSE have provided information on seven sensors: two for underwater noise – CEFAS and IOPAN; two for microplastics – IDRONAUT and LEITAT; one for an innovative piro and piezo resistive polymeric temperature and pressure – CSIC; one for heavy metal – CSIC; one for eutrophication sensor – DCU. Outside the scope of the questionnaire, FTM has proposed three sensors of which two for oil spill and one for heavy metals, realized in the framework of a previous EU project but that can be improved and tested with several platforms.
This information is anyway incomplete because in most cases for the novel sensors which will be developed over the course of COMMON SENSE, the sensors cannot be clearly designed yet as the project only started a few months ago - and, consequently, technical characteristics cannot actually be perfectly defined. This produces some lag in the acquired information that will be solved in the near future.
In the other questionnaire, partners-testers have provided information on eleven platforms. Outside the questionnaire, IOPAN has described two more platforms, one of which is a motorboat not previously listed in the DoW, and they have informed us that the oceanographic buoy in Gdansk Bay is not actually available. This is valid also for platforms from other partners where there were only preliminary contacts like for example for Aqualog and OBSEA Underwater observatory.
In the following months, new information will be provided and questionnaires information updated. Then important characteristics have to be considered such as maintenance, energy autonomy, data transfer/storage and dimension of the sensors that are actually missing.
Further updates of this report are therefore necessary in order to individuate the most suitable platforms to test each kind of sensor and then used at the end of 2014 when WP9 (Testing activities) will start.
Objectives and rationale
The objective of deliverable 2.2 is the definition of the characteristics and procedures of sensors deployment methodology on physical supports/platforms, possible needs and characteristics of the available platform.
This is preparatory for the activities in other WPs and tasks:
- for task 2.2 (New generation technologies), that will provide cost-effective sensors for large scale production through Deliverable 2.1 [month 10];
- for task 2.5 (Monitoring strategy) where sensitivity and stress tests of new sensors will be designed in order to establish confidence limits under different situations and certify the performance of the new instruments [Deliverable 2.5 at month 16].
- for WP9 (Field testing) starting at month 12 (October 2014) when the deployment of new sensors will be drawn and then realized
Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2
Review of existing and operable observing systems and sensors
Deliverable 1.4 is aimed at identification of existing and operable observing systems and sensors which are relevant to COMMON SENSE objectives. Report aggregates information on existing observing initiatives, programmes, systems, platforms and sensors.
The Report includes:
• inventory of previous and current EU funded projects. Some of the them, even if started before 2007, were aimed at activities which are relevant or in line with those stemming from MSFD in 2008. The ‘granulation’ of the contents and objectives of the projects varies from sensors development through observation methodologies to monitoring strategies,
• inventory of research infrastructure in Europe. It starts from an attempt to define of Marine Research Infrastructure, as there is not a single definition of Research Infrastructure (RI) or of Marine Research Infrastructure (MRI), and there are different ways to categorise them. The chapter gives the categorization of the MRI, together with detailed description and examples of MRI – research platforms, marine data systems, research sites and laboratories with respect of four MSFD descriptors relevant to COMMON SENSE project,
• two chapters on Research Programs and Infrastructure Networks; the pan-European initiatives aimed at cooperation and efficient use of infrastructural resources for marine observation and monitoring and data exchange are analysed. The detailed description of observing sensors and system are presented as well as frameworks for cooperation,
• information on platforms (research vessels) available to the Project for testing developed sensors and systems. Platforms are available and operating in all three regions of interest to the project (Mediterranean, North Sea, Baltic),
• annexed detailed description of two world-wide observation networks and systems. These systems are excellent examples of added value offered by integrated systems of ocean observation (from data to knowledge) and how they work in practice.
Report concludes that it is seen a shortage of new classes of sensors to fulfil the emerging monitoring needs. Sensors proposed to be developed by COMMON SENSE project shall answer to the needs stemmed from introduction of MSFD and GES descriptors
System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS
An extensive system test of the ATLAS muon spectrometer has been performed in
the H8 beam line at the CERN SPS during the last four years. This spectrometer
will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip
Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for
triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the
end-cap region. The test set-up emulates one projective tower of the barrel
(six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC
and three TGCs). The barrel and end-cap stands have also been equipped with
optical alignment systems, aiming at a relative positioning of the precision
chambers in each tower to 30-40 micrometers. In addition to the performance of
the detectors and the alignment scheme, many other systems aspects of the ATLAS
muon spectrometer have been tested and validated with this setup, such as the
mechanical detector integration and installation, the detector control system,
the data acquisition, high level trigger software and off-line event
reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have
allowed measuring the trigger and tracking performance of this set-up, in a
configuration very similar to the final spectrometer. A special bunched muon
beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used
to study the timing resolution and bunch identification performance of the
trigger chambers. The ATLAS first-level trigger chain has been operated with
muon trigger signals for the first time
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Standalone vertex finding in the ATLAS muon spectrometer
A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
- …
