27 research outputs found

    Disk level S-matrix elements at eikonal Regge limit

    Full text link
    We examine the calculation of the color-ordered disk level S-matrix element of massless scalar vertex operators for the special case that some of the Mandelstam variables for which there are no open string channel in the amplitude, are set to zero. By explicit calculation we show that the string form factors in the 2n-point functions reduce to one at the eikonal Regge limit.Comment: 17 pages, Latex file, no figur

    Strings in PP-Waves and Worldsheet Deconstruction

    Get PDF
    Based on the observation that AdS5×S5/ZkAdS_5\times S^5/Z_k orbifolds have a maximal supersymmetric PP-wave limit, the description of strings in PP-waves in terms of N=2{\cal N}=2 quiver gauge theories is presented. We consider two different, small and large kk, cases and show that the operators in the gauge theory which correspond to stringy excitations are labelled by two integers, the excitation and winding or momentum numbers. For the large kk case, the relation between the space-time and worldsheet deconstructions is discussed. We also comment on the possible duality between these two cases.Comment: Latex file, 15 pages, no figures. v2: a reference adde

    Analysis of selected glutathione S-transferase gene polymorphisms in Malaysian type 2 diabetes mellitus patients with and without cardiovascular disease

    Get PDF
    Type 2 diabetes mellitus (T2DM) is believed to be associated with excessive production of reactive oxygen species. Glutathione S-transferase (GST) polymorphisms result in decreased or absent enzyme activity and altered oxidative stress, and have been associated with cardiovascular disease (CVD). The present study assessed the effect of GST polymorphisms on the risk of developing T2DM in individuals of Malaysian Malay ethnicity. A total of 287 subjects, consisting of 87 T2DM and 64 CVD/T2DM patients, as well as 136 healthy gender- and age-matched controls were genotyped for selected polymorphisms to evaluate associations with T2DM susceptibility. Genomic DNA was extracted using commercially available kits, and GSTM1, GSTT1, and α-globin sequences were amplified by multiplex polymerase chain reaction. Biochemical parameters were measured with a Hitachi autoanalyzer. The Fisher exact test, the chi-square statistic, and means ± standard deviations were calculated using the SPSS software. Overall, we observed no significant differences regarding genotype and allele frequencies between each group (P = 0.224 and 0.199, respectively). However, in the combined analysis of genotypes and blood measurements, fasting plasma glucose, HbA1c, and triglyceride levels, followed by age, body mass index, waist-hip ratio, systolic blood pressure, and history of T2DM significantly differed according to GST polymorphism (P ˂ 0.05). Genetically induced absence of the GSTT1 enzyme is an independent and powerful predictor of premature vascular morbidity and death in individuals with T2DM, and might be triggered by cigarette smoking’s oxidative effects. These polymorphisms could be screened in other ethnicities within Malaysia to determine further possible risk factors

    Integrable Spin Chains on the Conformal Moose

    Full text link
    We consider N=1, D=4 superconformal U(N)^{pq} Yang-Mills theories dual to AdS_5xS^5/Z_pxZ_q orbifolds. We construct the dilatation operator of this superconformal gauge theory at one-loop planar level. We demonstrate that a specific sector of this dilatation operator can be thought of as the transfer matrix for a two-dimensional statistical mechanical system, related to an integrable SU(3) anti-ferromagnetic spin chain system, which in turn is equivalent to a 2+1-dimensional string theory where the spatial slices are discretized on a triangular lattice. This is an extension of the SO(6) spin chain picture of N=4 super Yang-Mills theory. We comment on the integrability of this N=1 gauge theory and hence the corresponding three-dimensional statistical mechanical system, its connection to three-dimensional lattice gauge theories, extensions to six-dimensional string theories, AdS/CFT type dualities and finally their construction via orbifolds and brane-box models. In the process we discover a new class of almost-BPS BMN type operators with large engineering dimensions but controllably small anomalous corrections.Comment: 53 pages, 14 eps figures; Added reference

    Quintom Cosmology: Theoretical implications and observations

    Full text link
    We review the paradigm of quintom cosmology. This scenario is motivated by the observational indications that the equation of state of dark energy across the cosmological constant boundary is mildly favored, although the data are still far from being conclusive. As a theoretical setup we introduce a no-go theorem existing in quintom cosmology, and based on it we discuss the conditions for the equation of state of dark energy realizing the quintom scenario. The simplest quintom model can be achieved by introducing two scalar fields with one being quintessence and the other phantom. Based on the double-field quintom model we perform a detailed analysis of dark energy perturbations and we discuss their effects on current observations. This type of scenarios usually suffer from a manifest problem due to the existence of a ghost degree of freedom, and thus we review various alternative realizations of the quintom paradigm. The developments in particle physics and string theory provide potential clues indicating that a quintom scenario may be obtained from scalar systems with higher derivative terms, as well as from non-scalar systems. Additionally, we construct a quintom realization in the framework of braneworld cosmology, where the cosmic acceleration and the phantom divide crossing result from the combined effects of the field evolution on the brane and the competition between four and five dimensional gravity. Finally, we study the outsets and fates of a universe in quintom cosmology. In a scenario with null energy condition violation one may obtain a bouncing solution at early times and therefore avoid the Big Bang singularity. Furthermore, if this occurs periodically, we obtain a realization of an oscillating universe. Lastly, we comment on several open issues in quintom cosmology and their connection to future investigations.Comment: 105 pages, 36 figures, version published at Physics Report

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A High Performance Digital Time Interval Spectrometer: An Embedded, FPGA-Based System With Reduced Dead Time Behaviour

    No full text
    In this work, a fast 32-bit one-million-channel time interval spectrometer is proposed based on field programmable gate arrays (FPGAs). The time resolution is adjustable down to 3.33 ns (= T, the digitization/discretization period) based on a prototype system hardware. The system is capable to collect billions of time interval data arranged in one million timing channels. This huge number of channels makes it an ideal measuring tool for very short to very long time intervals of nuclear particle detection systems. The data are stored and updated in a built-in SRAM memory during the measuring process, and then transferred to the computer. Two time-to-digital converters (TDCs) working in parallel are implemented in the design to immune the system against loss of the first short time interval events (namely below 10 ns considering the tests performed on the prototype hardware platform of the system). Additionally, the theory of multiple count loss effect is investigated analytically. Using the Monte Carlo method, losses of counts up to 100 million events per second (Meps) are calculated and the effective system dead time is estimated by curve fitting of a non-extendable dead time model to the results (τNE = 2.26 ns). An important dead time effect on a measured random process is the distortion on the time spectrum; using the Monte Carlo method this effect is also studied. The uncertainty of the system is analysed experimentally. The standard deviation of the system is estimated as ± 36.6 × T (T = 3.33 ns) for a one-second time interval test signal (300 million T in the time interval)

    Observation probability estimation of dead-time models using Monte Carlo simulations

    No full text
    One of difficulties of working with pulse mode detectors is dead time and its distorting effect on measuring with the random process. Three different models for description of dead time effect are given, these are paralizable, non-paralizable, and hybrid models. The first two models describe the behaviour of the detector with one degree of freedom. But the third one which is a combination of the other two models, with two degrees of freedom, proposes a more realistic description of the detector behaviour. Each model has its specific observation probability. In this research, these models are simulated using the Monte Carlo method and their individual observation probabilities are determined and compared with each other. The Monte Carlo simulation, is first validated by analytical formulas of the models and then is utilized for calculation of the observation probability. Using the results, the probability for observing pulses with different time intervals in the output of the detector is determined. Therefore, it is possible by comparing the observation probability of these models with the experimental result to determine the proper model and optimized values of its parameters. The results presented in this paper can be applied to other pulse mode detection and measuring systems of physical stochastic processes

    Diagnostic methods applied to Esfahan light water subcritical reactor (ELWSCR)

    No full text
    In this work, Esfahan light water subcritical reactor (ELWSCR) is analysed using experimental and theoretical diagnostic methods. Important neutronic parameters of the system such as prompt neutron lifetime, delayed neutron fraction, prompt neutron decay constant, negative reactivity of the core, fuel and moderator temperature coefficient of reactivity, and overall and local void coefficient of reactivity are estimated. Also, neutron flux distribution, reflector saving, water level effect, and lattice pitch of the core including operating point of the facility are studied in details. Theoretical results are calculated by MCNPX and measurements are performed utilizing zero power reactor noise method. Detailed descriptions of the results are explained in the text
    corecore