51 research outputs found

    Upon oxidative stress, the antiapoptotic Hsp60/procaspase-3 complex persists in mucoepidermoid carcinoma cells.

    Get PDF
    Hsp60, a mitochondrial chaperonin highly conserved during evolution, has been found elevated in the cytosol of cancer cells, both in vivo and in vitro, but its role in determining apoptosis during oxidative stress (OS) has not yet been fully elucidated. The aim of the present work was to study the effects of OS on Hsp60 levels and its interactions with procaspase- 3 (p-C3) and p53 in tumor cells. NCI-H292 (mucoepidermoid carcinoma) cells were exposed to various concentrations of hydrogen peroxide (H2O2) for 24 hours. Cell viability was determined by Trypan blue and MTT assays. DNA damage was assessed by the Comet assay, and apoptosis was measured by the AnnexinV cytofluorimetric test. Exposure to increasing concentrations of H2O2 resulted in a reduction of cell viability, DNA damage, and early apoptotic phenomena. Hsp60, p-C3, p53, and p21 were assessed by Western blotting and immunocytochemistry before and after OS. Hsp60 and p-C3 were present before and after OS induction. Immunoprecipitation experiments showed an Hsp60/p-C3 complex before OS that persisted after it, while an Hsp60/p53 complex was not detected in either condition. The presence of wild type (wt) p53 was confirmed by RT-PCR, and p21 detection suggested p53 activation after OS. We postulate that, although OS may induce early apoptosis in NCI-H292 cells, Hsp60 exerts an anti-apoptotic effect in these cells and, by extension, it may do so in other cancer cell

    Donor Cell Acute Myeloid Leukemia after Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease: A Case Report and Literature Review

    Get PDF
    The patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT. In the subsequent ten years, the AML relapsed three times and the patient underwent chemotherapy and three further HSCTs; donors were the same sister from the first HSCT, an unrelated donor, and his mother. The patient died during the third relapse. The DCL was characterized since onset by an acquired translocation between chromosomes 9 and 11, with a molecular rearrangement between the MLL and MLLT3 genes-a quite frequent cause of AML. In all of the relapses, the malignant clone had XX sex chromosomes and this rearrangement, thus indicating that it was always the original clone derived from the transplanted sister's cells. It exhibited the ability to remain quiescent in the BM during repeated chemotherapy courses, remission periods and HSCT. The leukemic clone then acquired different additional anomalies during the ten years of follow-up, with cytogenetic results characterized both by anomalies frequent in AML and by different, non-recurrent changes. This type of cytogenetic course is uncommon in AML

    HSP90 and eNOS partially co-localize and change cellular localization in relation to different ECM components in 2D and 3D cultures of adult rat cardiomyocytes.

    Get PDF
    Background information. Cultivation techniques promoting three-dimensional organization of mammalian cells are of increasing interest, since they confer key functionalities of the native ECM (extracellular matrix) with a power for regenerative medicine applications. Since ECM compliance influences a number of cell functions, Matrigel-based gels have become attractive tools, because of the ease with which their mechanical properties can be controlled. In the present study, we took advantage of the chemical and mechanical tunability of commonly used cell culture substrates, and co-cultures to evaluate, on both two- and three-dimensional cultivated adult rat cardiomyocytes, the impact of ECM chemistry and mechanics on the cellular localization of two interacting signalling proteins: HSP90 (heat-shock protein of 90 kDa) and eNOS (endothelial nitric oxide synthase). Results. Freshly isolated rat cardiomyocytes were cultured on fibronectin, Matrigel gel or laminin, or in co-culture with cardiac fibroblasts, and tested for both integrity and viability. As validation criteria, integrity of both plasma membrane and mitochondria was evaluated by transmission electron microscopy. Cell sensitivity to microenvironmental stimuli was monitored by immunofluorescence and confocal microscopy. We found that HSP90 and eNOS expression and localization are affected by changes in ECM composition. Elaboration of the images revealed, on Matrigel-cultured cardiomyocytes, areas of high co-localization between HSP90 and eNOS and co-localization coefficients, which indicated the highest correlation with respect to the other substrates. Conclusions. Our three-dimensional adult cardiomyocyte cultures are suitable for both analysing cell–ECM interactions at electron and confocal microscopy levels and monitoring micro-environment impact on cardiomyocyte phenotype

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore