623 research outputs found

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl

    Molecular and isotopic investigations of pottery and “charred remains” from Sannai Maruyama and Sannai Maruyama No. 9, Aomori Prefecture.

    Get PDF
    This paper presents a preliminary study of the analysis of organic residues of Early and Middle Jomon pottery and ‘charred remains.’ Samples are taken from the Sannai Maruyama site and the Sannai Maruyama No. 9 site in Aomori City, Aomori Prefecture in northern Japan. The following questions are addressed in this study: (i) Do organic residues survive in association with pottery vessels and charred remains? (ii) Can the residues be identified based on molecular and isotopic criteria applied in other investigations? (iii) Are the residues associated with the charred remains common to the residues associated with the pottery vessels? (iv) How do these residues contribute to our understanding of food processing and consumption? Results of our analysis indicate that the lipid composition of the pottery extracts is remarkably similar although some of the sherds exhibited better preservation and a wider range of molecules were detected albeit in lower abundance. There is a marked contrast with the composition of the lipid extracts of the ‘charred remains.’ The lipid compositions of sample sets from Sannai Maruyama and Sannai Maruyama No. 9 suggest aquatic resources in the pottery but with a plant contribution. The ‘charred remains’ from Sannai Maruyama contain plant tissues most likely with a high starch composition such as nuts. Lipids were recovered from the majority of the samples

    Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a global health problem, and current therapy for COPD is poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. Imbalance of oxidant/antioxidant balance caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g. NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervening COPD

    Reversible gene knockdown in mice using a tight, inducible shRNA expression system

    Get PDF
    RNA interference through expression of short hairpin (sh)RNAs provides an efficient approach for gene function analysis in mouse genetics. Techniques allowing to control time and degree of gene silencing in vivo, however, are still lacking. Here we provide a generally applicable system for the temporal control of ubiquitous shRNA expression in mice. Depending on the dose of the inductor doxycycline, the knockdown efficiency reaches up to 90%. To demonstrate the feasibility of our tool, a mouse model of reversible insulin resistance was generated by expression of an insulin receptor (Insr)-specific shRNA. Upon induction, mice develop severe hyperglycemia within seven days. The onset and progression of the disease correlates with the concentration of doxycycline, and the phenotype returns to baseline shortly after withdrawal of the inductor. On a broad basis, this approach will enable new insights into gene function and molecular disease mechanisms

    Multi-scale sequence correlations increase proteome structural disorder and promiscuity

    Full text link
    Numerous experiments demonstrate a high level of promiscuity and structural disorder in organismal proteomes. Here we ask the question what makes a protein promiscuous, i.e., prone to non-specific interactions, and structurally disordered. We predict that multi-scale correlations of amino acid positions within protein sequences statistically enhance the propensity for promiscuous intra- and inter-protein binding. We show that sequence correlations between amino acids of the same type are statistically enhanced in structurally disordered proteins and in hubs of organismal proteomes. We also show that structurally disordered proteins possess a significantly higher degree of sequence order than structurally ordered proteins. We develop an analytical theory for this effect and predict the robustness of our conclusions with respect to the amino acid composition and the form of the microscopic potential between the interacting sequences. Our findings have implications for understanding molecular mechanisms of protein aggregation diseases induced by the extension of sequence repeats

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    corecore