591 research outputs found
Alfv\'en Reflection and Reverberation in the Solar Atmosphere
Magneto-atmospheres with Alfv\'en speed [a] that increases monotonically with
height are often used to model the solar atmosphere, at least out to several
solar radii. A common example involves uniform vertical or inclined magnetic
field in an isothermal atmosphere, for which the Alfv\'en speed is exponential.
We address the issue of internal reflection in such atmospheres, both for
time-harmonic and for transient waves. It is found that a mathematical boundary
condition may be devised that corresponds to perfect absorption at infinity,
and, using this, that many atmospheres where a(x) is analytic and unbounded
present no internal reflection of harmonic Alfv\'en waves. However, except for
certain special cases, such solutions are accompanied by a wake, which may be
thought of as a kind of reflection. For the initial-value problem where a
harmonic source is suddenly switched on (and optionally off), there is also an
associated transient that normally decays with time as O(t-1) or O(t-1 ln t),
depending on the phase of the driver. Unlike the steady-state harmonic
solutions, the transient does reflect weakly. Alfv\'en waves in the solar
corona driven by a finite-duration train of p-modes are expected to leave such
transients.Comment: Accepted by Solar Physic
Noncommutative Dipole Field Theories And Unitarity
We extend the argument of Gomis and Mehen for violation of unitarity in field
theories with space-time noncommutativity to dipole field theories. In dipole
field theories with a timelike dipole vector, we present 1-loop amplitudes that
violate the optical theorem. A quantum mechanical system with nonlocal
potential of finite extent in time also shows violation of unitarity.Comment: typos corrected, more details added in Sec 5, version to appear in
JHE
Upper critical field in dirty two-band superconductors: breakdown of the anisotropic Ginzburg-Landau theory
We investigate the upper critical field in a dirty two-band superconductor
within quasiclassical Usadel equations. The regime of very high anisotropy in
the quasi-2D band, relevant for MgB, is considered. We show that strong
disparities in pairing interactions and diffusion constant anisotropies for two
bands influence the in-plane in a different way at high and low
temperatures. This causes temperature-dependent anisotropy, in
accordance with recent experimental data in MgB. The three-dimensional
band most strongly influences the in-plane near , in the
Ginzburg-Landau (GL) region. However, due to a very large difference between
the c-axis coherence lengths in the two bands, the GL theory is applicable only
in an extremely narrow temperature range near . The angular dependence of
deviates from a simple effective-mass law even near .Comment: 12 pages, 5 figures, submitted to Phys.Rev.
Facilitator, Functionary, Friend or Foe? Studying the Role of iPads within Learning Activities Across a School Year
We present the findings from a longitudinal study of iPad use in a Primary school classroom. While tablet devices have
found their way into classroom environments, we still lack in depth and long-term studies of how they integrate into everyday classroom activities. Our findings illustrate in-classroom tablet use and the broad range of learning activities in subjects such as maths, languages, social sciences, and even physical education. Our observations expand current models on teaching and learning supported by tablet technology. Our findings are child-centred, focusing on three different roles that tablets can play as part of learning activities: Friend, Functionary, and Facilitator. This new perspective on in-classroom tablet use can facilitate critical discussions around the integration and impact of these devices in the educational context, from a design and educational point of view
Ginzburg-Landau theory of vortices in a multi-gap superconductor
The Ginzburg-Landau functional for a two-gap superconductor is derived within
the weak-coupling BCS model. The two-gap Ginzburg-Landau theory is, then,
applied to investigate various magnetic properties of MgB2 including an upturn
temperature dependence of the transverse upper critical field and a core
structure of an isolated vortex. Orientation of vortex lattice relative to
crystallographic axes is studied for magnetic fields parallel to the c-axis. A
peculiar 30-degree rotation of the vortex lattice with increasing strength of
an applied field observed by neutron scattering is attributed to the multi-gap
nature of superconductivity in MgB2.Comment: 11 page
Improved comprehensibility and reliability of explanations via restricted halfspace discretization
Abstract. A number of two-class classification methods first discretize each attribute of two given training sets and then construct a propositional DNF formula that evaluates to True for one of the two discretized training sets and to False for the other one. The formula is not just a classification tool but constitutes a useful explanation for the differences between the two underlying populations if it can be comprehended by humans and is reliable. This paper shows that comprehensibility as well as reliability of the formulas can sometimes be improved using a discretization scheme where linear combinations of a small number of attributes are discretized
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Vortices, Instantons and Branes
The purpose of this paper is to describe a relationship between the moduli
space of vortices and the moduli space of instantons. We study charge k
vortices in U(N) Yang-Mills-Higgs theories and show that the moduli space is
isomorphic to a special Lagrangian submanifold of the moduli space of k
instantons in non-commutative U(N) Yang-Mills theories. This submanifold is the
fixed point set of a U(1) action on the instanton moduli space which rotates
the instantons in a plane. To derive this relationship, we present a D-brane
construction in which the dynamics of vortices is described by the Higgs branch
of a U(k) gauge theory with 4 supercharges which is a truncation of the
familiar ADHM gauge theory. We further describe a moduli space construction for
semi-local vortices, lumps in the CP(N) and Grassmannian sigma-models, and
vortices on the non-commutative plane. We argue that this relationship between
vortices and instantons underlies many of the quantitative similarities shared
by quantum field theories in two and four dimensions.Comment: 32 Pages, 4 Figure
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV
Peer reviewe
- …
