69 research outputs found

    Automatic anatomical foot and ankle coordinate toolbox

    Get PDF
    Accurate analysis of bone position and orientation in foot and ankle studies relies on anatomical coordinate systems (ACS). Reliable ACSs are necessary for many biomechanical and clinical studies, especially those including weightbearing computed tomography and biplane fluoroscopy. Existing ACS approaches suffer from limitations such as manual input, oversimplifications, or non-physiological methods. To address these shortcomings, we introduce the Automatic Anatomical Foot and Ankle Coordinate Toolbox (AAFACT), a MATLAB-based toolbox that automates the calculation of ACSs for the major fourteen foot and ankle bones. In this manuscript, we present the development and evaluation of AAFACT, aiming to provide a standardized coordinate system toolbox for foot and ankle studies. The AAFACT was evaluated using a dataset of fifty-six models from seven pathological groups: asymptomatic, osteoarthritis, pilon fracture, progressive collapsing foot deformity, clubfoot, Charcot Marie Tooth, and cavovarus. Three analyses were conducted to assess the reliability of AAFACT. Firstly, ACSs were compared between automatically and manually segmented bone models to assess consistency. Secondly, ACSs were compared between individual bones and group mean bones to assess within-population precision. Lastly, ACSs were compared between the overall mean bone and group mean bones to assess the overall accuracy of anatomical representation. Statistical analyses, including statistical shape modeling, were performed to evaluate the reliability, accuracy, and precision of AAFACT. The comparison between automatically and manually segmented bone models showed consistency between the calculated ACSs. Additionally, the comparison between individual bones and group mean bones, as well as the comparison between the overall mean bone and group mean bones, revealed accurate and precise ACSs calculations. The AAFACT offers a practical and reliable solution for foot and ankle studies in clinical and engineering settings. It accommodates various foot and ankle pathologies while accounting for bone morphology and orientation. The automated calculation of ACSs eliminates the limitations associated with manual input and non-physiological methods. The evaluation results demonstrate the robustness and consistency of AAFACT, making it a valuable tool for researchers and clinicians. The standardized coordinate system provided by AAFACT enhances comparability between studies and facilitates advancements in foot and ankle research

    An Evidence-Based Review of Fat Modifying Supplemental Weight Loss Products

    Get PDF
    Objective. To review the literature on fat modifying dietary supplements commonly used for weight loss. Methods. Recently published randomized, placebo-controlled trials were identified in PubMed, MEDLINE, International Pharmaceutical Abstracts, Cochrane Database, and Google Scholar using the search terms dietary supplement, herbal, weight loss, obesity, and individual supplement names. Discussion. Data for conjugated linoleic acid (CLA), Garcinia cambogia, chitosan, pyruvate, Irvingia gabonensis, and chia seed for weight loss were identified. CLA, chitosan, pyruvate, and Irvingia gabonensis appeared to be effective in weight loss via fat modifying mechanisms. However, the data on the use of these products is limited. Conclusion. Many obese people use dietary supplements for weight loss. To date, there is little clinical evidence to support their use. More data is necessary to determine the efficacy and safety of these supplements. Healthcare providers should assist patients in weighing the risks and benefits of dietary supplement use for weight loss

    Multi-level multi-domain statistical shape model of the subtalar, talonavicular, and calcaneocuboid joints

    Get PDF
    Traditionally, two-dimensional conventional radiographs have been the primary tool to measure the complex morphology of the foot and ankle. However, the subtalar, talonavicular, and calcaneocuboid joints are challenging to assess due to their bone morphology and locations within the ankle. Weightbearing computed tomography is a novel high-resolution volumetric imaging mechanism that allows detailed generation of 3D bone reconstructions. This study aimed to develop a multi-domain statistical shape model to assess morphologic and alignment variation of the subtalar, talonavicular, and calcaneocuboid joints across an asymptomatic population and calculate 3D joint measurements in a consistent weightbearing position. Specific joint measurements included joint space distance, congruence, and coverage. Noteworthy anatomical variation predominantly included the talus and calcaneus, specifically an inverse relationship regarding talar dome heightening and calcaneal shortening. While there was minimal navicular and cuboid shape variation, there were alignment variations within these joints; the most notable is the rotational aspect about the anterior-posterior axis. This study also found that multi-domain modeling may be able to predict joint space distance measurements within a population. Additionally, variation across a population of these four bones may be driven far more by morphology than by alignment variation based on all three joint measurements. These data are beneficial in furthering our understanding of joint-level morphology and alignment variants to guide advancements in ankle joint pathological care and operative treatments

    Implementation of a Pediatric Behavioral Health Medication Safety Initiative in a State Medicaid Program

    Get PDF
    The poster will address concerns about an increase in the use of behavioral medications in children and the need to manage prescribing practices to ensure appropriate use of the drugs. Presented at the American Drug Utilization Review Society 2015 Conference

    Mechanics and Energetics of Human Feet: A Contemporary Perspective for Understanding Mobility Impairments in Older Adults

    Get PDF
    Much of our current understanding of age-related declines in mobility has been aided by decades of investigations on the role of muscle–tendon units spanning major lower extremity joints (e.g., hip, knee and ankle) for powering locomotion. Yet, mechanical contributions from foot structures are often neglected. This is despite the emerging evidence of their critical importance in youthful locomotion. With the rapid growth in the field of human foot biomechanics over the last decade, our theoretical knowledge of young asymptomatic feet has transformed, from long-held views of the foot as a stiff lever and a shock absorber to that of a versatile system that can modulate mechanical power and energy output to accommodate various locomotor task demands. In this perspective review, we predict that the next set of impactful discoveries related to locomotion in older adults will emerge by integrating the novel tools and approaches that are currently transforming the field of human foot biomechanics. By illuminating the functions of the feet in older adults, we envision that future investigations will refine our mechanistic understanding of mobility deficits affecting our aging population, which may ultimately inspire targeted interventions to rejuvenate the mechanics and energetics of locomotion

    Measurement of associated Z plus charm production in proton-proton collisions at root s=8TeV

    Get PDF
    A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb(-1), collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with pT(l) > 20 GeV, vertical bar eta(l)vertical bar 25 GeV and vertical bar eta(jet)vertical bar Z + c + X) B(Z -> l(+)l(-)) = 8.8 +/- 0.5 (stat)+/- 0.6 (syst) pb. The ratio of the Z+c and Z+b production cross sections is measured to be sigma(pp -> Z+c+X)/sigma (pp -> Z+b+X) = 2.0 +/- 0.2 (stat)+/- 0.2 (syst). The Z+c production cross section and the cross section ratio are also measured as a function of the transverse momentum of theZ boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.Peer reviewe

    Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at root s=13 TeV

    Get PDF
    This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fb(-1). The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7TeV respectively.Peer reviewe

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    1. Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. 2. To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world

    Making Your Pharmacy Practice Department “In-dispense-able”

    No full text
    corecore