629 research outputs found

    Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis.

    Get PDF
    Coffee consumption has been shown in some studies to be associated with lower risk of prostate cancer. However, it is unclear if this association is causal or due to confounding or reverse causality. We conducted a Mendelian randomisation analysis to investigate the causal effects of coffee consumption on prostate cancer risk and progression. We used two genetic variants robustly associated with caffeine intake (rs4410790 and rs2472297) as proxies for coffee consumption in a sample of 46,687 men of European ancestry from 25 studies in the PRACTICAL consortium. Associations between genetic variants and prostate cancer case status, stage and grade were assessed by logistic regression and with all-cause and prostate cancer-specific mortality using Cox proportional hazards regression. There was no clear evidence that a genetic risk score combining rs4410790 and rs2472297 was associated with prostate cancer risk (OR per additional coffee increasing allele: 1.01, 95% CI: 0.98,1.03) or having high-grade compared to low-grade disease (OR: 1.01, 95% CI: 0.97,1.04). There was some evidence that the genetic risk score was associated with higher odds of having nonlocalised compared to localised stage disease (OR: 1.03, 95% CI: 1.01, 1.06). Amongst men with prostate cancer, there was no clear association between the genetic risk score and all-cause mortality (HR: 1.00, 95% CI: 0.97,1.04) or prostate cancer-specific mortality (HR: 1.03, 95% CI: 0.98,1.08). These results, which should have less bias from confounding than observational estimates, are not consistent with a substantial effect of coffee consumption on reducing prostate cancer incidence or progression.British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, and the National Institute for Health Research, under the auspices of the UK Clinical Research Collaboration Cancer Research UK. Grant Number: C18281/A19169 RMM and Caroline Relton (Integrative Cancer Epidemiology Programme) Canadian Institutes of Health Research the European Commission's Seventh Framework Programme. Grant Numbers: 223175, HEALTH-F2-2009-223175 Cancer Research UK. Grant Numbers: C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135 National Institute of Health (NIH) Cancer Post-Cancer GWAS. Grant Number: 1 U19 CA 148537-01 the GAME-ON initiative the European Community's Seventh Framework Programme. Grant Numbers: 223175, HEALTH-F2-2009-223175 Cancer Research UK. Grant Numbers: C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692 the National Institutes of Health. Grant Number: CA128978 Post-Cancer GWAS initiative. Grant Numbers: 1U19 CA148537, 1U19 CA148065, 1U19 CA148112 the GAME-ON initiative the Department of Defence. Grant Number: W81XWH-10-1-0341 the Canadian Institutes of Health Research (CIHR) CIHR Team in Familial Risks of Breast Cancer Komen Foundation for the Cure Breast Cancer Research Foundation. Grant Number: Ovarian Cancer Research Fund VicHealth and Cancer Council Victoria Australian NHMRC. Grant Numbers: 209057, 251553, 504711 Cancer Council Victoria Australian Institute of Health and Welfare (AIHW) National Death Index and the Australian Cancer Database U.K. Health Technology Assessment (HTA) Programme of the NIH Research. Grant Numbers: HTA 96/20/99, ISRCTN20141297 Prodigal study and the ProMPT (Prostate Mechanisms of Progression and Treatment) National Cancer Research Institute (NCRI) Department of Health, the Medical Research Council and Cancer Research UK. Grant Number: G0500966/75466 Cancer Research UK. Grant Number: C5047/A7357 NIHR Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit based at University Hospitals Bristol NHS Foundation Trust and the University of Bristol FCH, DEN and JLD are NIHR Senior Investigators MRC and the University of Bristol. Grant Numbers: G0600705, MC_UU_12013/6This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/ijc.3046

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Topiramate-Induced Modulation of Hepatic Molecular Mechanisms: An Aspect for Its Anti-Insulin Resistant Effect

    Get PDF
    Topiramate is an antiepileptic drug known to ameliorate insulin resistance besides reducing body weight. Albeit liver plays a fundamental role in regulation of overall insulin resistance, yet the effect of topiramate on this organ is controversial and is not fully investigated. The current work aimed to study the potential hepatic molecular mechanistic cassette of the anti-insulin resistance effect of topiramate. To this end, male Wistar rats were fed high fat/high fructose diet (HFFD) for 10 weeks to induce obese, insulin resistant, hyperglycemic animals, but with no overt diabetes. Two HFFD-groups received oral topiramate, 40 or 100 mg/kg, for two weeks. Topiramate, on the hepatic molecular level, has opposed the high fat/high fructose diet effect, where it significantly increased adiponectin receptors, GLUT2, and tyrosine kinase activity, while decreased insulin receptor isoforms. Besides, it improved the altered glucose homeostasis and lipid profile, lowered the ALT level, caused subtle, yet significant decrease in TNF-α, and boosted adiponectin in a dose dependent manner. Moreover, topiramate decreased liver weight/, visceral fat weight/, and epididymal fat weight/body weight ratios. The study proved that insulin-resistance has an effect on hepatic molecular level and that the topiramate-mediated insulin sensitivity is ensued partly by modulation of hepatic insulin receptor isoforms, activation of tyrosine kinase, induction of GLUT2 and elevation of adiponectin receptors, as well as their ligand, adiponectin, besides its known improving effect on glucose tolerance and lipid homeostasis

    Effect of metal Ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of L-phenylalanine, L-tyrosine, L-tryptophan and their zwitterionic forms

    Get PDF
    Methods of quantum chemistry have been applied to double-charged complexes involving the transition metals Ni2+, Cu2+ and Zn2+ with the aromatic amino acids (AAA) phenylalanine, tyrosine and tryptophan. The effect of hydration on the relative stability and geometry of the individual species studied has been evaluated within the supermolecule approach. The interaction enthalpies, entropies and Gibbs energies of nine complexes Phe•M, Tyr•M, Trp•M, (M = Ni2+, Cu2+ and Zn2+) were determined at the Becke3LYP density functional level of theory. Of the transition metals studied the bivalent copper cation forms the strongest complexes with AAAs. For Ni2+and Cu2+ the most stable species are the NO coordinated cations in the AAA metal complexes, Zn2+cation prefers a binding to the aromatic part of the AAA (complex II). Some complexes energetically unfavored in the gas-phase are stabilized upon microsolvation

    Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities

    Get PDF
    Background Epidermal growth factor receptor inhibitors (EGFRI) produce various dermatologic side effects in the majority of patients, and guidelines are crucial for the prevention and treatment of these untoward events. The purpose of this panel was to develop evidence-based recommendations for EGFRI-associated dermatologic toxicities. Methods A multinational, interdisciplinary panel of experts in supportive care in cancer reviewed pertinent studies using established criteria in order to develop first-generation recommendations for EGFRI-associated dermatologic toxicities. Results Prophylactic and reactive recommendations for papulopustular (acneiform) rash, hair changes, radiation dermatitis, pruritus, mucositis, xerosis/fissures, and paronychia are presented, as well as general dermatologic recommendations when possible. Conclusion Prevention and management of EGFRI-related dermatologic toxicities is critical to maintain patients’ health-related quality of life and dose intensity of antineoplastic regimens. More rigorous investigation of these toxicities is warranted to improve preventive and treatment strategies

    Fast and efficient QTL mapper for thousands of molecular phenotypes

    Get PDF
    In order to discover quantitative trait loci, multi-dimensional genomic datasets combining DNA-seq and ChiP-/RNA-seq require methods that rapidly correlate tens of thousands of molecular phenotypes with millions of genetic variants while appropriately controlling for multiple testing

    Gene expression imputation across multiple brain regions provides insights into schizophrenia risk

    Get PDF
    Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe
    corecore