1,257 research outputs found

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Transverse sphericity of primary charged particles in minimum bias proton–proton collisions at √s = 0.9, 2.76 and 7 TeV

    Get PDF
    Measurements of the sphericity of primary charged particles in minimum bias proton–proton collisions at s√=0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is measured in the plane perpendicular to the beam direction using primary charged tracks with p T>0.5 GeV/c in |η|<0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (N ch) is reported for events with different p T scales (“soft” and “hard”) defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low N ch, whereas the event generators show an opposite tendency. The combined study of the sphericity and the mean p T with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Ultra relativistic nuclear collisions

    No full text
    Ultra-relativistic nuclear collisions provide unique opportunities to study quantum chromodynamics at extreme temperatures and densities. In this contribution, an overview of selected recent results and developments will be given along with a brief general introduction to the field

    ALICE event displays in pp collisions at 7 TeV

    No full text
    Events with low, medium and high multiplicities in pp collisions at 7 TeV, recorded at the LHC by ALICE in June 2010. The big cylinder is the Time Projection Chamber of ALICE, with a diameter of 5 m and a length of 5 m, the inner red-green-blue cylinders are the Inner Tracking System

    Light hyper- and anti-nuclei production at the LHC measured with ALICE

    No full text
    The high collision energies reached at the LHC lead to significant production yields of light (anti-) and hyper-nuclei in proton-proton, proton-lead and, in particular, lead-lead collisions. The excellent particle identification capabilities of the ALICE apparatus, based on the specific energy loss in the Time Projection Chamber and the velocity information obtained with the Time-Of-Flight detector, allow for the detection of these rarely produced particles. Furthermore, the Inner Tracking System gives the possibility to separate primary nuclei from those originating from the decay of hyper-nuclei. One example is the hypertriton which is reconstructed in the decay channel 3LambdaH -&gt; 3H + pi. We present results on the production of stable nuclei and anti-nuclei in Pb--Pb and lighter collision systems. Hypernuclei production rates in Pb--Pb will also be shown. All results are compared with predictions for the production in thermal (statistical) models and alternatives which are based on coalescence mechanisms. The results obtained provide a solid basis for searches for lighter exotica such as the H-Dibaryon.</p

    High School Teachers 2015

    No full text
    corecore