325 research outputs found
Introducing New Methodologies for Identifying Design Patterns for Internationalization and Localization
This paper describes a new methodology for deriving interaction design patterns from an analysis of ethnographic data. It suggests using inductive and deductive analysis processes to identify and articulate patterns that address the needs of culturally diverse users of interactive, collaborative systems. This might inform the internationalization and localization process of computer supported collaboration systems
Strongly Interacting Luttinger Liquid and Superconductivity in an Exactly Solvable Model
A new family of exactly solvable one dimensional models with a hard-core
repulsive potential is solved by the Bethe Ansatz for an arbitrary hard-core
radius. The exact ground state phase diagrams in a plane 'electron density -
on-site interaction' have been studied for several values of a hard-core
radius. It is shown that superconducting phase and strongly interacting
Luttinger liquid state are coexisted at a high electron density and unusually
high value of repulsive on-site Coulomb interaction.Comment: 4 pages, 2 figures, RevTe
QFT on homothetic Killing twist deformed curved spacetimes
We study the quantum field theory (QFT) of a free, real, massless and
curvature coupled scalar field on self-similar symmetric spacetimes, which are
deformed by an abelian Drinfel'd twist constructed from a Killing and a
homothetic Killing vector field. In contrast to deformations solely by Killing
vector fields, such as the Moyal-Weyl Minkowski spacetime, the equation of
motion and Green's operators are deformed. We show that there is a *-algebra
isomorphism between the QFT on the deformed and the formal power series
extension of the QFT on the undeformed spacetime. We study the convergent
implementation of our deformations for toy-models. For these models it is found
that there is a *-isomorphism between the deformed Weyl algebra and a reduced
undeformed Weyl algebra, where certain strongly localized observables are
excluded. Thus, our models realize the intuitive physical picture that
noncommutative geometry prevents arbitrary localization in spacetime.Comment: 23 pages, no figures; v2: extended discussion of physical
consequences, compatible with version to be published in General Relativity
and Gravitatio
Weyl’s gauge argument
The standard U(1) “gauge principle” or “gauge argument” produces an exact potential A=dλ and a vanishing field F=ddλ=0. Weyl has his own gauge argument, which is sketchy, archaic and hard to follow; but at least it produces an inexact potential A and a nonvanishing field F=dA≠0. I attempt a reconstruction
Patterns of Interactions in Complex Social Networks Based on Coloured Motifs Analysis
Coloured network motifs are small subgraphs that enable to discover and interpret the patterns of interaction within the complex networks. The analysis of three-nodes motifs where the colour of the node reflects its high – white node or low – black node centrality in the social network is presented in the paper. The importance of the vertices is assessed by utilizing two measures: degree prestige and degree centrality. The distribution of motifs in these two cases is compared to mine the interconnection patterns between nodes. The analysis is performed on the social network derived from email communication
Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz
We construct the quantum versions of the monodromy matrices of KdV theory.
The traces of these quantum monodromy matrices, which will be called as ``-operators'', act in highest weight Virasoro modules. The -operators depend on the spectral parameter and their expansion
around generates an infinite set of commuting Hamiltonians
of the quantum KdV system. The -operators can be viewed as the
continuous field theory versions of the commuting transfer-matrices of
integrable lattice theory. In particular, we show that for the values
of the Virasoro central charge
the eigenvalues of the -operators satisfy a closed system of
functional equations sufficient for determining the spectrum. For the
ground-state eigenvalue these functional equations are equivalent to those of
massless Thermodynamic Bethe Ansatz for the minimal conformal field theory
; in general they provide a way to generalize the technique
of Thermodynamic Bethe Ansatz to the excited states. We discuss a
generalization of our approach to the cases of massive field theories obtained
by perturbing these Conformal Field Theories with the operator .
The relation of these -operators to the boundary states is also
briefly described.Comment: 24 page
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics
When Lenz proposed a simple model for phase transitions in magnetism, he
couldn't have imagined that the "Ising model" was to become a jewel in field of
equilibrium statistical mechanics. Its role spans the spectrum, from a good
pedagogical example to a universality class in critical phenomena. A quarter
century ago, Katz, Lebowitz and Spohn found a similar treasure. By introducing
a seemingly trivial modification to the Ising lattice gas, they took it into
the vast realms of non-equilibrium statistical mechanics. An abundant variety
of unexpected behavior emerged and caught many of us by surprise. We present a
brief review of some of the new insights garnered and some of the outstanding
puzzles, as well as speculate on the model's role in the future of
non-equilibrium statistical physics.Comment: 3 figures. Proceedings of 100th Statistical Mechanics Meeting,
Rutgers, NJ (December, 2008
Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data
We present an update of a search for supersymmetry in final states containing
jets, missing transverse momentum, and one isolated electron or muon, using
1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the
ATLAS experiment at the LHC in the first half of 2011. The analysis is carried
out in four distinct signal regions with either three or four jets and
variations on the (missing) transverse momentum cuts, resulting in optimized
limits for various supersymmetry models. No excess above the standard model
background expectation is observed. Limits are set on the visible cross-section
of new physics within the kinematic requirements of the search. The results are
interpreted as limits on the parameters of the minimal supergravity framework,
limits on cross-sections of simplified models with specific squark and gluino
decay modes, and limits on parameters of a model with bilinear R-parity
violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables,
final version to appear in Physical Review
Frequency drift in MR spectroscopy at 3T
Purpose
Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.
Method
A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).
Results
Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.
Discussion
This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.publishedVersio
- …
