Abstract

We construct the quantum versions of the monodromy matrices of KdV theory. The traces of these quantum monodromy matrices, which will be called as ``T{\bf T}-operators'', act in highest weight Virasoro modules. The T{\bf T}-operators depend on the spectral parameter λ\lambda and their expansion around λ=\lambda = \infty generates an infinite set of commuting Hamiltonians of the quantum KdV system. The T{\bf T}-operators can be viewed as the continuous field theory versions of the commuting transfer-matrices of integrable lattice theory. In particular, we show that for the values c=13(2n+1)22n+3,n=1,2,3,...c=1-3{{(2n+1)^2}\over {2n+3}} , n=1,2,3,... of the Virasoro central charge the eigenvalues of the T{\bf T}-operators satisfy a closed system of functional equations sufficient for determining the spectrum. For the ground-state eigenvalue these functional equations are equivalent to those of massless Thermodynamic Bethe Ansatz for the minimal conformal field theory M2,2n+3{\cal M}_{2,2n+3}; in general they provide a way to generalize the technique of Thermodynamic Bethe Ansatz to the excited states. We discuss a generalization of our approach to the cases of massive field theories obtained by perturbing these Conformal Field Theories with the operator Φ1,3\Phi_{1,3}. The relation of these T{\bf T}-operators to the boundary states is also briefly described.Comment: 24 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020