222 research outputs found

    Estimation of Some Trace Elements in Severe Head Injured Patients

    Get PDF
    Objectives: Severe head injury is the most devastating neurosurgical condition and it is only next to cancers as the leading cause of death in developed countries. Because trace elements (TEs) are involved in most of enzymes that drives the biochemical reactions, so they are considered as a window to the biochemical environment of the body in general and in brain in specific.  Aim of the Study: This study measured six TEs (Fe, Zn, Mg, Cu, Mn and Co) in 29 patients with severe head injury (GCS Score 3-9); their ages between 5-50 years. Collection and estimation performed at both Neurosurgical Hospital (NH) in Baghdad and Medical Research Center (MRC) of College of Medicine, Kadhimiyah between January 2004 and August 2004. 17 of healthy Iraqi volunteers of age- and sex- matched were used as a comparable control group in TEs measurement. Results: The analysis showed that serum Cu level has a striking significant positive correlation with GCS (P<0.01) followed by serum Mg (P<0.01), serum Fe (P<0.05) with mode of correlation is linear except for that of serum Fe has three phases of correlation. Serum Mg is the only TE showed statistical significant lower value in patient group than the control group (P<0.01). Zn is the only TE that is correlated with the mode of intake, significantly lower among patient on IVF than those on N/G (P<0.01). Serum zinc correlated in linear relation with serum Mg (P<0.05), serum Fe with serum Mg (P<0.05)

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    Autophagy–physiology and pathophysiology

    Get PDF
    “Autophagy” is a highly conserved pathway for degradation, by which wasted intracellular macromolecules are delivered to lysosomes, where they are degraded into biologically active monomers such as amino acids that are subsequently re-used to maintain cellular metabolic turnover and homeostasis. Recent genetic studies have shown that mice lacking an autophagy-related gene (Atg5 or Atg7) cannot survive longer than 12 h after birth because of nutrient shortage. Moreover, tissue-specific impairment of autophagy in central nervous system tissue causes massive loss of neurons, resulting in neurodegeneration, while impaired autophagy in liver tissue causes accumulation of wasted organelles, leading to hepatomegaly. Although autophagy generally prevents cell death, our recent study using conditional Atg7-deficient mice in CNS tissue has demonstrated the presence of autophagic neuron death in the hippocampus after neonatal hypoxic/ischemic brain injury. Thus, recent genetic studies have shown that autophagy is involved in various cellular functions. In this review, we introduce physiological and pathophysiological roles of autophagy

    Phylogeography of a Land Snail Suggests Trans-Mediterranean Neolithic Transport

    Get PDF
    Background: Fragmented distribution ranges of species with little active dispersal capacity raise the question about their place of origin and the processes and timing of either range fragmentation or dispersal. The peculiar distribution of the land snail Tudorella sulcata s. str. in Southern France, Sardinia and Algeria is such a challenging case. Methodology: Statistical phylogeographic analyses with mitochondrial COI and nuclear hsp70 haplotypes were used to answer the questions of the species' origin, sequence and timing of dispersal. The origin of the species was on Sardinia. Starting from there, a first expansion to Algeria and then to France took place. Abiotic and zoochorous dispersal could be excluded by considering the species' life style, leaving only anthropogenic translocation as parsimonious explanation. The geographic expansion could be dated to approximately 8,000 years before present with a 95% confidence interval of 10,000 to 3,000 years before present. Conclusions: This period coincides with the Neolithic expansion in the Western Mediterranean, suggesting a role of these settlers as vectors. Our findings thus propose that non-domesticated animals and plants may give hints on the direction and timing of early human expansion routes

    Extracorporeal cellular therapy (ELAD) in severe alcoholic hepatitis: A multinational, prospective, controlled, randomized trial.

    Get PDF
    Severe alcoholic hepatitis (sAH) is associated with a poor prognosis. There is no proven effective treatment for sAH, which is why early transplantation has been increasingly discussed. Hepatoblastoma-derived C3A cells express anti-inflammatory proteins and growth factors and were tested in an extracorporeal cellular therapy (ELAD) study to establish their effect on survival for subjects with sAH. Adults with sAH, bilirubin ≥8 mg/dL, Maddrey\u27s discriminant function ≥ 32, and Model for End-Stage Liver Disease (MELD) score ≤ 35 were randomized to receive standard of care (SOC) only or 3-5 days of continuous ELAD treatment plus SOC. After a minimum follow-up of 91 days, overall survival (OS) was assessed by using a Kaplan-Meier survival analysis. A total of 203 subjects were enrolled (96 ELAD and 107 SOC) at 40 sites worldwide. Comparison of baseline characteristics showed no significant differences between groups and within subgroups. There was no significant difference in serious adverse events between the 2 groups. In an analysis of the intent-to-treat population, there was no difference in OS (51.0% versus 49.5%). The study failed its primary and secondary end point in a population with sAH and with a MELD ranging from 18 to 35 and no upper age limit. In the prespecified analysis of subjects with MELD \u3c 28 (n = 120), ELAD was associated with a trend toward higher OS at 91 days (68.6% versus 53.6%; P = .08). Regression analysis identified high creatinine and international normalized ratio, but not bilirubin, as the MELD components predicting negative outcomes with ELAD. A new trial investigating a potential benefit of ELAD in younger subjects with sufficient renal function and less severe coagulopathy has been initiated. Liver Transplantation 24 380-393 2018 AASLD

    Disinfection of Ocular Cells and Tissues by Atmospheric-Pressure Cold Plasma

    Get PDF
    Background: Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. Methodology and Principal Findings: We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2',7'-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2) was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. Conclusions: A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses

    Smoking, Green Tea Consumption, Genetic Polymorphisms in the Insulin-Like Growth Factors and Lung Cancer Risk

    Get PDF
    Insulin-like growth factors (IGFs) are mediators of growth hormones; they have an influence on cell proliferation and differentiation. In addition, IGF-binding protein (IGFBP)-3 could suppress the mitogenic action of IGFs. Interestingly, tea polyphenols could substantially reduce IGF1 and increase IGFBP3. In this study, we evaluated the effects of smoking, green tea consumption, as well as IGF1, IGF2, and IGFBP3 polymorphisms, on lung cancer risk. Questionnaires were administered to obtain the subjects' characteristics, including smoking habits and green tea consumption from 170 primary lung cancer cases and 340 healthy controls. Genotypes for IGF1, IGF2, and IGFBP3 were identified by polymerase chain reaction. Lung cancer cases had a higher proportion of smoking, green tea consumption of less than one cup per day, exposure to cooking fumes, and family history of lung cancer than controls. After adjusting the confounding effect, an elevated risk was observed in smokers who never drank green tea, as compared to smokers who drank green tea more than one cup per day (odds ratio (OR) = 13.16, 95% confidence interval (CI) = 2.96–58.51). Interaction between smoking and green tea consumption on lung cancer risk was also observed. Among green tea drinkers who drank more than one cup per day, IGF1 (CA)19/(CA)19 and (CA)19/X genotypes carriers had a significantly reduced risk of lung cancer (OR = 0.06, 95% CI = 0.01–0.44) compared with IGF1 X/X carriers. Smoking-induced pulmonary carcinogenesis could be modulated by green tea consumption and their growth factor environment

    The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide

    Get PDF
    Background: A plant-based diet protects against chronic oxidative stress-related diseases. Dietary plants contain variable chemical families and amounts of antioxidants. It has been hypothesized that plant antioxidants may contribute to the beneficial health effects of dietary plants. Our objective was to develop a comprehensive food database consisting of the total antioxidant content of typical foods as well as other dietary items such as traditional medicine plants, herbs and spices and dietary supplements. This database is intended for use in a wide range of nutritional research, from in vitro and cell and animal studies, to clinical trials and nutritional epidemiological studies. Methods: We procured samples from countries worldwide and assayed the samples for their total antioxidant content using a modified version of the FRAP assay. Results and sample information (such as country of origin, product and/or brand name) were registered for each individual food sample and constitute the Antioxidant Food Table. Results: The results demonstrate that there are several thousand-fold differences in antioxidant content of foods. Spices, herbs and supplements include the most antioxidant rich products in our study, some exceptionally high. Berries, fruits, nuts, chocolate, vegetables and products thereof constitute common foods and beverages with high antioxidant values. Conclusions: This database is to our best knowledge the most comprehensive Antioxidant Food Database published and it shows that plant-based foods introduce significantly more antioxidants into human diet than non-plant foods. Because of the large variations observed between otherwise comparable food samples the study emphasizes the importance of using a comprehensive database combined with a detailed system for food registration in clinical and epidemiological studies. The present antioxidant database is therefore an essential research tool to further elucidate the potential health effects of phytochemical antioxidants in diet

    A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific

    Get PDF
    peer-reviewedBackground: Spermatozoa have a remarkable epigenome in line with their degree of specialization, their unique nature and different requirements for successful fertilization. Accordingly, perturbations in the establishment of DNA methylation patterns during male germ cell differentiation have been associated with infertility in several species.Background: Spermatozoa have a remarkable epigenResults: The quantification of DNA methylation at CCGG sites using luminometric methylation assay (LUMA) highlighted the undermethylation of bull sperm compared to the sperm of rams, stallions, mice, goats and men. Total blood cells displayed a similarly high level of methylation in bulls and rams, suggesting that undermethylation of the bovine genome was specific to sperm. Annotation of CCGG sites in different species revealed no striking bias in the distribution of genome features targeted by LUMA that could explain undermethylation of bull sperm. To map DNA methylation at a genome-wide scale, bull sperm was compared with bovine liver, fibroblasts and monocytes using reduced representation bisulfite sequencing (RRBS) and immunoprecipitation of methylated DNA followed by microarray hybridization (MeDIP-chip). These two methods exhibited differences in terms of genome coverage, and consistently, two independent sets of sequences differentially methylated in sperm and somatic cells were identified for RRBS and MeDIP-chip. Remarkably, in the two sets most of the differentially methylated sequences were hypomethylated in sperm. In agreement with previous studies in other species, the sequences that were specifically hypomethylated in bull sperm targeted processes relevant to the germline differentiation program (piRNA metabolism, meiosis, spermatogenesis) and sperm functions (cell adhesion, fertilization), as well as satellites and rDNA repeats. Conclusions: These results highlight the undermethylation of bull spermatozoa when compared with both bovine somatic cells and the sperm of other mammals, and raise questions regarding the dynamics of DNA methylation in bovine male germline. Whether sperm undermethylation has potential interactions with structural variation in the cattle genome may deserve further attention. While bull semen is widely used in artificial insemination, the literature describing DNA methylation in bull spermatozoa is still scarce. The purpose of this study was therefore to characterize the bull sperm methylome relative to both bovine somatic cells and the sperm of other mammals through a multiscale analysis
    corecore