49 research outputs found

    Investigation of the nanocrytalline SnO2 Synthesized by Homogeneous Precipitation

    Get PDF
    Nanocrystalline tin dioxide synthesized by the homogeneous pre cipitation method using the reaction of tin tetrachloride pentahydrate and urea solutions has been investigated. The nanocrystalline powder has been traced at different calcination temperatures (300ºC-1050ºC), and then characterized by using   Thermogravemetric analysis, differential thermal analysis and x-ray diffraction. The microstructure of the obtained nanoparticles has been examined by scanning and transmission electron microscopy. The average crystallite size, determined by x-ray diffraction, was found to be in the range of 3 –30 nm. The analysis exhibited a tetragonal phase.  Optical properties were investigated by a UV–vis absorption spectrophotometer. The calculated optical band gap lies between 4.47–3.71 eV as a result of increasing the calcination temperatures and crystallite size. Surface area and porosity of SnO2 nanoparticles are measured. Specific surface area which is related to pore volume and decreases from 155 m2/g at 100ºC to 3.3 m2/g at 1050ºC.Â

    A Family of Chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera)

    Get PDF
    Chemoperception in invertebrates is mediated by a family of G-protein-coupled receptors (GPCR). To date nothing is known about the molecular mechanisms of chemoperception in coleopteran species. Recently the genome of Tribolium castaneum was sequenced for use as a model species for the Coleoptera. Using blast searches analyses of the T. castaneum genome with previously predicted amino acid sequences of insect chemoreceptor genes, a putative chemoreceptor family consisting of 62 gustatory receptors (Grs) and 26 olfactory receptors (Ors) was identified. The receptors have seven transmembrane domains (7TMs) and all belong to the GPCR receptor family. The expression of the T. castaneum chemoreceptor genes was investigated using quantification real- time RT-PCR and in situ whole mount RT-PCR analysis in the antennae, mouth parts, and prolegs of the adults and larvae. All of the predicted TcasGrs were expressed in the labium, maxillae, and prolegs of the adults but TcasGr13, 19, 28, 47, 62, 98, and 61 were not expressed in the prolegs. The TcasOrs were localized only in the antennae and not in any of the beetles gustatory organs with one exception; the TcasOr16 (like DmelOr83b), which was localized in the antennae, labium, and prolegs of the beetles. A group of six TcasGrs that presents a lineage with the sugar receptors subfamily in Drosophila melanogaster were localized in the lacinia of the Tribolium larvae. TcasGr1, 3, and 39, presented an ortholog to CO2 receptors in D. melanogaster and Anopheles gambiae was recorded. Low expression of almost all of the predicted chemoreceptor genes was observed in the head tissues that contain the brains and suboesophageal ganglion (SOG). These findings demonstrate the identification of a chemoreceptor family in Tribolium, which is evolutionarily related to other insect species

    Deciphering Proteomic Signatures of Early Diapause in Nasonia

    Get PDF
    Insect diapause is an alternative life-history strategy used to increase longevity and survival in harsh environmental conditions. Even though some aspects of diapause are well investigated, broader scale studies that elucidate the global metabolic adjustments required for this remarkable trait, are rare. In order to better understand the metabolic changes during early insect diapause, we used a shotgun proteomics approach on early diapausing and non-diapausing larvae of the recently sequenced hymenopteran model organism Nasonia vitripennis. Our results deliver insights into the molecular underpinnings of diapause in Nasonia and corroborate previously reported diapause-associated features for invertebrates, such as a diapause-dependent abundance change for heat shock and storage proteins. Furthermore, we observed a diapause-dependent switch in enzymes involved in glycerol synthesis and a vastly changed capacity for protein synthesis and degradation. The abundance of structural proteins and proteins involved in protein synthesis decreased with increasing diapause duration, while the abundance of proteins likely involved in diapause maintenance (e.g. ferritins) increased. Only few potentially diapause-specific proteins were identified suggesting that diapause in Nasonia relies to a large extent on a modulation of pre-existing pathways. Studying a diapause syndrome on a proteomic level rather than isolated pathways or physiological networks, has proven to be an efficient and successful avenue to understand molecular mechanisms involved in diapause

    Immunity of an Alternative Host Can Be Overcome by Higher Densities of Its Parasitoids Palmistichus elaeisis and Trichospilus diatraeae

    Get PDF
    Interactions of the parasitoids Palmistichus elaeisis Delvare & LaSalle and Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) with its alternative host Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) affect the success or failure of the mass production of these parasitoids for use in integrated pest management programs. The aim of this study was to evaluate changes in the cellular defense and encapsulation ability of A. gemmatalis pupae against P. elaeisis or T. diatraeae in adult parasitoid densities of 1, 3, 5, 7, 9, 11 or 13 parasitoids/pupae. We evaluated the total quantity of circulating hemocytes and the encapsulation rate versus density. Increasing parasitoid density reduced the total number of hemocytes in the hemolymph and the encapsulation rate by parasitized pupae. Furthermore, densities of P. elaeisis above 5 parasitoids/pupae caused higher reduction in total hemocyte numbers. The encapsulation rate fell with increasing parasitoid density. However, parasitic invasion by both species induced generally similar responses. The reduction in defensive capacity of A. gemmatalis is related to the adjustment of the density of these parasitoids to their development in this host. Thus, the role of the density of P. elaeisis or T. diatraeae by pupa is induced suppression of cellular defense and encapsulation of the host, even without them possesses a co-evolutionary history. Furthermore, these findings can predict the success of P. elaeisis and T. diatraeae in the control of insect pests through the use of immunology as a tool for evaluation of natural enemies

    Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    Get PDF
    Background: Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported

    Unravelling the evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor gene families in Bilaterians: insights from Anopheles Mosquitoes

    Get PDF
    Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anophelesmosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa(2+)-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.Foundation for Science and Technology, Portugal (FCT) [PTDC/BIA-BCM/114395/2009]; European Regional Development Fund (ERDF) COMPETE - Operational Competitiveness Programme; Portuguese funds through FCT Foundation for Science and Technology [PEst-C/MAR/LA0015/2013, UID/Multi/04326/2013, PEst-OE/SAU/LA0018/2013]; FCT [SFRH/BPD/89811/2012, SFRH/BPD/80447/2011, SFRH/BPD/66742/2009]; auxiliary research contract FCT Pluriannual funds [PEst-C/MAR/LA0015/2013, UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio

    An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST) project to characterize the antennal transcriptome of the noctuid pest model, <it>Spodoptera littoralis</it>, and to identify candidate genes involved in odour/pheromone detection.</p> <p>Results</p> <p>By targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the <it>Bombyx mori </it>proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation.</p> <p>Conclusions</p> <p>Our project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in <it>S. littoralis</it>, and for ultimately identifying original targets to fight against moth herbivorous pests.</p

    Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies

    Get PDF
    Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes

    Topological and Functional Characterization of an Insect Gustatory Receptor

    Get PDF
    Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8 is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera. The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol

    Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    Get PDF
    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems
    corecore