12 research outputs found

    Impact of Magnetic Water Irrigation for Improve Growth Parameters of Two Onion Cultivars Allium cepa L.

    Get PDF
    A field experiment was carried out during 2015-2016 in the Bqubah nursery that belongs to Directorate of Diyala agriculture to study the effect of magnetized irrigation water on growth parameters of two onion cultivars viz. Texas early white 1012 and Texas munerva 1013. The experimental design was split plot with four replications. Results were revealed that significant differences between Texas early white 1012 and Texas munerva 1013, magnetic and non magnetic water and also interaction of two varieties x magnetic and non magnetic water in all tested growth parameters. Texas munerva 1013 was surpassed on Texas early white 1012 and magnetic water was surpassed on non magnetic water in all studied growth parameters such as bulb diameter , Bulb height , Bulb weight without leaves , Number of green leaves and Weight of green leaves. Keywords: Onion, Texas early white 1012, Texas munerva 1013 and magnetic wate

    Comparison the Formation of Spark Corona Discharge between Tap and distilled Waters at Liquid Electrode System

    Get PDF
    In this paper, we studied the spark corona discharge in tap and distillited waters. The results show the shape of cone that generated on the tip of capillary tube is different with conductivity of liquids. The blue glow appears at the end of capillary tube and the drop extends into a cone. In addition, the conducitivity is affected on the relationship between the appearance of the blue glow discharge with the applied voltage. The size of the cone decreases with an increase in applied voltage. The cone diameter at the base of capillary tube oscillates with period approximately 1 Sec. this oscillates in the cone diameters is due to the change distance between the liquid electrode and the surface of liquid. The intensity of spark corona discharge that formed in tap water higher than that formed in distillited water. In addiation, when the applied voltage is 5 KV on distillted water, the drope extends into two cones while in tap water the drop extends into one cone. These contrast between two water types which under test (i.e. tap and distillited waters) is due to the differance in condictivity of water

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Background Ending the global tobacco epidemic is a defining challenge in global health. Timely and comprehensive estimates of the prevalence of smoking tobacco use and attributable disease burden are needed to guide tobacco control efforts nationally and globally. Methods We estimated the prevalence of smoking tobacco use and attributable disease burden for 204 countries and territories, by age and sex, from 1990 to 2019 as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We modelled multiple smoking-related indicators from 3625 nationally representative surveys. We completed systematic reviews and did Bayesian meta-regressions for 36 causally linked health outcomes to estimate non-linear dose-response risk curves for current and former smokers. We used a direct estimation approach to estimate attributable burden, providing more comprehensive estimates of the health effects of smoking than previously available. Findings Globally in 2019, 1.14 billion (95% uncertainty interval 1.13-1.16) individuals were current smokers, who consumed 7.41 trillion (7.11-7.74) cigarette-equivalents of tobacco in 2019. Although prevalence of smoking had decreased significantly since 1990 among both males (27.5% [26. 5-28.5] reduction) and females (37.7% [35.4-39.9] reduction) aged 15 years and older, population growth has led to a significant increase in the total number of smokers from 0.99 billion (0.98-1.00) in 1990. Globally in 2019, smoking tobacco use accounted for 7.69 million (7.16-8.20) deaths and 200 million (185-214) disability-adjusted life-years, and was the leading risk factor for death among males (20.2% [19.3-21.1] of male deaths). 6.68 million [86.9%] of 7.69 million deaths attributable to smoking tobacco use were among current smokers. Interpretation In the absence of intervention, the annual toll of 7.69 million deaths and 200 million disability-adjusted life-years attributable to smoking will increase over the coming decades. Substantial progress in reducing the prevalence of smoking tobacco use has been observed in countries from all regions and at all stages of development, but a large implementation gap remains for tobacco control. Countries have a dear and urgent opportunity to pass strong, evidence-based policies to accelerate reductions in the prevalence of smoking and reap massive health benefits for their citizens. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Analysis and Investigation the Effect of the Printing Parameters on the Mechanical and Physical Properties of PLA Parts Fabricated via FDM Printing

    No full text
    Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique that creates prototypes and parts with intricate geometrical designs. It is gaining popularity since it enhances products by removing the need for expensive equipment. The printed item's mechanical properties are affected by the type of materials used, the printing process, and the printing parameters. The 3-D model of the polylactic acid (PLA) filament generated specimens was created using the Fused Deposition Modeling procedure and developed using Solid Works. This study investigates the effect of printing parameters on the mechanical and physical properties of samples printed using a Fused Deposition Modeling machine (Creality Ender-5 Pro). Six parameters are used: infill pattern, density, overlap percentage, layer thickness, shell thickness, and top/bottom layer number. Five levels were chosen for each FDM parameter. The results illustrated how printing parameters affected the mechanical and physical properties of samples, which were proven by ultimate tensile stress, surface roughness, and percentage of tensile average deviation. A comparison between the predicted results and the measured results was presented, and the maximum percentage error of the model, which fit the data well, was 0.54%, 0.3%, and 1.36% for ultimate tensile strength (UTS), surface roughness (Ra), and Tensile average deviation percentage respectively

    Effect of Zinc Oxide Level on Tensile Properties of a NR/SBR Composite

    No full text
    The aim of this work is studying the effect of zinc oxide level on tensile properties of the compounds. Since the compounds consist of natural rubber (NR) and styrene-butadiene rubber (SBR) with ratio (50:50).This work included studying the replacing of conventional zinc oxide by nano-zinc oxide as an activator has small particle size and large surface area in comparison with conventional zinc oxide so as to improve tensile properties and reduce the amount of zinc oxide inside the compounds. In this work, two groups of compounds are prepared: Six compounds have conventional zinc oxide as an activator with concentrations (0,2,4,5,6,8 phr (part per handred)). Nine compounds have nano-zinc oxide as an activator with concentrations (0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6 phr). The compounds were prepared by two-roll mill and laboratory press. Dumbbells (test samples) of tensile test are prepared by Wallace. Test Specimens Cutting Press. Tensile test carried out by Monsanto T10 Tensometer. Crosslink density tested by swelling the samples of the compounds by toluene and using Flory- Rehner equation. The results refer to the maximum values of tensile properties of a NR/SBR blend with conventional zinc oxide at (5 phr) of zinc oxide level. The maximum values of tensile properties with nano-zinc oxide at (1.2 phr) of zinc oxide level. The replacing conventional zinc oxide by nano-zinc oxide reduces the cost of the compounds by reducing the amount of zinc oxide inside the compounds and improves the tensile properties

    A Review on a Straight Bevel Gear Made from Composite

    No full text
    The purpose of this work is to present a clear fundamental thought for designing and investigating straight bevel gear made of composite material. Composite materials have the advantage of being light, producing low noises, and extra loading capacities. Due to these properties, it is highly preferable over conventional materials. A comparison between different types of material used in a gear structure will be shown. The outcome shows that a new form of cheap material may be useful for designing a new type of lighter and stiffer gear, designed for robotic arm applications or any power transmission application.</jats:p

    Times Three Dimensional Spur Gear Static Contact Investigations Using Finite Element Method

    No full text
    &lt;p&gt;A gear is a critical component and can be found in many industrial applications. This investigation develops a three dimensional finite element spur gear model to calculate the contact stress on the gear tooth surfaces. Contact stress is one of the main factors that is used to decide the gears tooth surface strength. In addition there are other important factors such as frictional forces and micro-pits that influence the gear tooth surface. Different analytical techniques have been used to calculate the contact stress of the gear surfaces namely; Hertzian theory and AGMA standards. The analytical results have been compared to the numerical analysis to verify the spur gear finite element model.&lt;/p&gt;</jats:p
    corecore