64 research outputs found

    Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke

    Get PDF
    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement

    Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals

    Get PDF
    Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis

    Bone turnover markers in sheep and goat: a review of the scientific literature

    Get PDF
    Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for his PhD scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio

    Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals.

    Get PDF
    Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis

    The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery

    Get PDF

    Search for triboson W±W±W∓ production in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    This paper reports a search for triboson W±W±WW^{\pm}W^{\pm}W^{\mp} production in two decay channels (W±W±W±ν±ννW^{\pm}W^{\pm}W^{\mp}\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu\ell^{\mp}\nu and W±W±W±ν±νjjW^{\pm}W^{\pm}W^{\mp}\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu{}jj with =e,μ\ell=e, \mu) in proton-proton collision data corresponding to an integrated luminosity of 20.3 fb1^{-1} at a centre-of-mass energy of 8 TeV with the ATLAS detector at the Large Hadron Collider. Events with exactly three charged leptons, or two leptons with the same electric charge in association with two jets, are selected. The total number of events observed in data is consistent with the Standard Model (SM) predictions. The observed 95 % confidence level upper limit on the SM W±W±WW^{\pm}W^{\pm}W^{\mp} production cross section is found to be 730 fb with an expected limit of 560 fb in the absence of SM W±W±WW^{\pm}W^{\pm}W^{\mp} production. Limits are also set on WWWWWWWW anomalous quartic gauge couplings.Comment: Comments: 39 pages in total, author list starting page 23, 5 figures, 7 tables, submitted to European Physics Journal C, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-07

    Performance of algorithms that reconstruct missing transverse momentum in √s= 8 TeV proton-proton collisions in the ATLAS detector

    Get PDF
    The reconstruction and calibration algorithms used to calculate missing transverse momentum (EmissT ) with the ATLAS detector exploit energy deposits in the calorimeter and tracks reconstructed in the inner detector as well as the muon spectrometer. Various strategies are used to suppress effects arising from additional proton–proton interactions, called pileup, concurrent with the hard-scatter processes. Tracking information is used to distinguish contributions from the pileup interactions using their vertex separation along the beam axis. The performance of the EmissT reconstruction algorithms, especially with respect to the amount of pileup, is evaluated using data collected in proton–proton collisions at a centre-of-mass energy of 8 TeV during 2012, and results are shown for a data sample corresponding to an integrated luminosity of 20.3fb−1. The simulation and modelling of EmissT in events containing a Z boson decaying to two charged leptons (electrons or muons) or a W boson decaying to a charged lepton and a neutrino are compared to data. The acceptance for different event topologies, with and without high transverse momentum neutrinos, is shown for a range of threshold criteria for EmissT , and estimates of the systematic uncertainties in the EmissT measurements are presented.ATLAS Collaboration, for complete list of authors see dx.doi.org/10.1140/epjc/s10052-017-4780-2Funding: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [58].</p
    corecore