20 research outputs found

    Resonant Cooper-Pair Tunneling: Counting Statistics and Frequency-Dependent Current Noise

    Full text link
    We discuss the counting statistics and current noise associated with the double Josephson quasiparticle resonance point in a superconducting single electron transistor. The counting statistics are in general phase-dependent, despite the fact that the average current has no dependence on phase. Focusing on parameter regimes where the counting statistics have no phase-dependence, we use a general relation first derived by MacDonald in 1948 to obtain the full frequency-dependent shot noise directly from the counting statistics, without any further approximations. We comment on problems posed by the phase-dependence of the counting statistics for the finite-frequency noise.Comment: 13 pages, 2 figures; to appear in the proceedings of the NATO ASI "New Directions in Mesoscopic Physics", Erice, 200

    Synthetic Spectrum Constraints on a Model of the Cataclysmic Variable QU Carinae

    Full text link
    Neither standard model SEDs nor truncated standard model SEDs fit observed spectra of QU Carinae with acceptable accuracy over the range 900\AA to 3000\AA. Non-standard model SEDs fit the observation set accurately. The non-standard accretion disk models have a hot region extending from the white dwarf to R=1.36RwdR=1.36R_{\rm wd},a narrow intermediate temperature annulus, and an isothermal remainder to the tidal cutoff boundary. The models include a range of M˙\dot{M} values between 1.0×107Myr11.0{\times}10^{-7}M_{\odot} {\rm yr}^{-1} and 1.0×106Myr11.0{\times}10^{-6}M_{\odot} {\rm yr}^{-1} and limiting values of MwdM_{\rm wd} between 0.6M0.6M_{\odot} and 1.2M1.2M_{\odot}. A solution with Mwd=1.2MM_{\rm wd}=1.2M_{\odot} is consistent with an empirical mass-period relation. The set of models agree on a limited range of possible isothermal region TeffT_{\rm eff} values between 14,000K and 18,000K. The model-to-model residuals are so similar that it is not possible to choose a best model. The Hipparcos distance, 610 pc, is representative of the model results. The orbital inclination is between 40\arcdeg and 60\arcdeg.Comment: 52 pages, 19 Figure

    Microscopic study of freeze-out in relativistic heavy ion collisions at SPS energies

    Full text link
    The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/cc are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission takes place from the whole space-time domain available for the system evolution, but not from the thin ''freeze-out hypersurface", adopted in fluid dynamical models. Pions are continuously emitted from the whole volume of the reaction and reflect the main trends of the system evolution. Nucleons in Pb+Pb collisions initially come from the surface region. For both systems there is a separation of the elastic and inelastic freeze-out. The mesons with large transverse momenta, ptp_t, are predominantly produced at the early stages of the reaction. The low ptp_t-component is populated by mesons coming mainly from the decay of resonances. This explains naturally the decreasing source sizes with increasing ptp_t, observed in HBT interferometry. Comparison with S+S and Au+Au systems at 11.6 AGeV/cc is also presented.Comment: REVTEX, 26 pages incl. 9 figures and 2 tables, to be published in the Physical Review

    Coherent quantum state storage and transfer between two phase qubits via a resonant cavity

    Full text link
    A network of quantum-mechanical systems showing long lived phase coherence of its quantum states could be used for processing quantum information. As with classical information processing, a quantum processor requires information bits (qubits) that can be independently addressed and read out, long-term memory elements to store arbitrary quantum states, and the ability to transfer quantum information through a coherent communication bus accessible to a large number of qubits. Superconducting qubits made with scalable microfabrication techniques are a promising candidate for the realization of a large scale quantum information processor. Although these systems have successfully passed tests of coherent coupling for up to four qubits, communication of individual quantum states between qubits via a quantum bus has not yet been demonstrated. Here, we perform an experiment demonstrating the ability to coherently transfer quantum states between two superconducting Josephson phase qubits through a rudimentary quantum bus formed by a single, on chip, superconducting transmission line resonant cavity of length 7 mm. After preparing an initial quantum state with the first qubit, this quantum information is transferred and stored as a nonclassical photon state of the resonant cavity, then retrieved at a later time by the second qubit connected to the opposite end of the cavity. Beyond simple communication, these results suggest that a high quality factor superconducting cavity could also function as a long term memory element. The basic architecture presented here is scalable, offering the possibility for the coherent communication between a large number of superconducting qubits.Comment: 17 pages, 4 figures (to appear in Nature

    Pion Interferometry in Au+Au Collisions at the Ags

    Full text link
    Two-pion Bose-Einstein correlations have been studied using the BNL-E866 Forward Spectrometer in 11.6 A {center_dot} GeV/c Au + Au collisions. The data were analyzed using three-dimensional correlation parameterizations to study transverse momentum-dependent source parameters. The freeze-out time and the duration of emission were derived from the source radii parameters

    Phospho-mTOR in non-tumour and tumour bladder urothelium : pattern of expression and impact on urothelial bladder cancer patients

    Get PDF
    Urothelial bladder carcinoma (UBC) is heterogeneous in its pathology and clinical behaviour. Evaluation of prognostic and predictive biomarkers is necessary, in order to produce personalised treatment options. The present study used immunohistochemistry to evaluate UBC sections containing tumour and non-tumour areas from 76 patients, for the detection of p-mTOR, CD31 and D2-40 (blood and lymphatic vessels identification, respectively). Of the non-tumour and tumour sections, 36 and 20% were scored positive for p-mTOR expression, respectively. Immunoexpression was observed in umbrella cells from non-tumour urothelium, in all cell layers from non-muscle-invasive (NMI) tumours (including expression in superficial cells), and in spots of cells from muscle-invasive (MI) tumours. Positive expression decreased from non-tumour to tumour urothelium, and from pT1/pTis to pT3/pT4 tumours; however, the few pT3/pT4 positive cases had worse survival rates, with 5-year disease-free survival being significantly lower. Angiogenesis occurrence was impaired in pT3/pT4 tumours that did not express p-mTOR. In conclusion, p-mTOR expression in non-tumour umbrella cells is likely a reflection of their metabolic plasticity, and extension to the inner layers of the urothelium in NMI tumours is consistent with an enhanced malignant potential. The expression in cell spots in a few MI tumours and absence of expression in the remaining tumours is intriguing and requires further research. Additional studies regarding the up- and downstream effectors of the mTOR pathway should be conducte

    Two-particle BoseEinstein correlations in pp collisions at √s = 0.9 and 7 TeV measured with the ATLAS detector

    Get PDF
    The paper presents studies of Bose–Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range pT > 100 MeV and |η| <2.5 in proton–proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb−1, 190 μb−1 and 12.4 nb-1 for 0.9 TeV,7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated
    corecore